Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.4.163

Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution  

Jang, I.J. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Yoo, Y.R. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.19, no.4, 2020 , pp. 163-173 More about this Journal
Abstract
Cavitation corrosion in many industrial plants has recently become a serious issue. Cavitation corrosion has generally been investigated using a vibratory method based on ASTM G32 standard, and the test can be divided into direct cavitation and indirect cavitation. Cavitation corrosion test uses the vibration frequency of the horn of 20 kHz with constant peak-to-peak displacement amplitude. In this work, the peak-to-peak amplitude was controlled from 15 ㎛ to 85 ㎛, and electrochemical measurements were obtained during indirect cavitation. The relationship between cavitation corrosion rate and electrochemical properties was discussed. Corrosion steps of carbon steel at the initial stage under cavitation condition in 3.5 % NaCl can be proposed. When the cavitation strength is relatively low, corrosion of the steel is more affected by the electrochemical process than by the mechanical process; but when the cavitation strength is relatively high, corrosion of the steel is affected more by the mechanical process than by the electrochemical process. This work confirmed that the critical ultrasonic amplitude of 0.42 %C carbon steel is 53.8 ㎛, and when the amplitude is less than 53.8 ㎛, the corrosion effect during the cavitation corrosion process is higher than the mechanical effect.
Keywords
Carbon steel; Cavitation corrosion test; Cavitation corrosion rate; Electrochemical properties; Critical ultrasonic amplitude;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. A. Jeong, M. S. Kim, S. D. Yang, C. H. Hong, N. K. Lee, and D. H. Lee, J. Kor. Soc. Mar. Eng., 42, 280 (2018). http://dx.doi.org/10.5916/jkosme.2018.42.4.280
2 S. Y. Lee, K. H. Lee, C. U. Won, S. Na, Y. G. Yoon, M. H. Lee, Y. H. Kim, K. M. Moon, and J. G. Kim, J. Ocean Eng. Technol., 27, 79 (2013). https://doi.org/10.5574/KSOE.2013.27.3.079   DOI
3 J. H. Jeong, Y. H. Kim, K. M. Moon, M. H. Lee, and J. G. Kim, J. Kor. Soc. Mar. Eng., 37, 877 (2013). https://doi.org/10.5916/jkosme.2013.37.8.877   DOI
4 Y. Huang and D. Ji, Sensor. Actuat. B-Chem., 135, 375 (2008). https://doi.org/10.1016/j.snb.2008.09.008   DOI
5 S. Nesic, Corros. Sci., 49, 4308 (2007). https://doi.org/10.1016/j.corsci.2007.06.006   DOI
6 S. A. A. Buhri, D. K. Kaithari, and E. Rasu, Int. J. Stud. Res. Technol. Manag., 4, 24 (2016). https://doi.org/10.18510/ijsrtm.2016.421
7 L. Wang, N. Qiu, D. -H. Hellmann, and X. Zhu, J. Mech. Sci. Technol., 30, 533 (2016). https://doi.org/10.1007/s12206-016-0106-9   DOI
8 I. Tzanakis, L. Bolzoni, D. G. Eskin, and M. Hadfield, Metall. Mater. Trans. A, 48, 2193 (2017). https://doi.org/10.1007/s11661-017-4004-2   DOI
9 H. Sun, J. Mech. Sci. Technol., 26, 2535(2012). https://doi.org/10.1007/s12206-012-0633-y   DOI
10 S. B. Um, Master Thesis, p. 4, Andong National University, Gyeongbuk (2017).
11 A. Thiruvengadam, J. Basic Eng., 85, 365 (1963). https://doi.org/10.1115/1.3656610   DOI
12 M. S. Plesset and A. T. Ellis, Wear, 1, 455 (1955). https://doi.org/10.1016/0043-1648(58)90222-9
13 B. Vyas and C. M. Preece, Metall. Trans. A, 8, 915 (1977). https://doi.org/10.1007/BF02661573   DOI
14 S. J. Lee and S. J. Kim, Corros. Sci. Tech., 11, 205 (2012). https://doi.org/10.14773/cst.2012.11.5.205   DOI
15 S. J. Lee, J. H. Lee, and S. J. Kim, Corros. Sci. Tech., 14, 140 (2015). https://doi.org/10.14773/cst.2015.14.3.140   DOI
16 ASTM G32-16, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, West Conshohocken, PA (2016). http://doi.org/10.1520/G0032-16
17 K. T. Kim, H. Y. Chang, and Y. S. Kim, Corros. Sci. Tech., 17, 310 (2018). https://doi.org/10.14773/cst.2018.17.6.310
18 C. Haosheng, L. Jiang, C. Darong, and W. Jiadao, Wear, 265, 692 (2008). https://doi.org/10.1016/j.wear.2007.12.011   DOI
19 C. A. Silva, I. B. Varela, F. O. Kolawole, A. P. Tschiptschin, and Z. Panossian, Wear, 452-453, 203282 (2020). https://doi.org/10.1016/j.wear.2020.203282   DOI
20 C. J. Lin and J. L. He, Wear, 259, 154 (2005). https://doi.org/10.1016/j.wear.2005.02.099   DOI
21 J. T. Chang, C. H. Yeh, J. L. He, and K. C. Chen, Wear, 255, 162 (2003). https://doi.org/10.1016/S0043-1648(03)00199-6   DOI
22 Y. Zheng, S. Luo, and W. Ke, Wear, 262, 1308 (2007). https://doi.org/10.1016/j.wear.2007.01.006   DOI
23 F. N. da Silva, P. M. de Oliveira, N. M. da Fonseca, T. de Souza Araujo, E. T. de Carbalho Filho, J. D. da Cunha, D. R. da Silva, and J. T. N. de Medeiros, Revista Materia, 24, e12302 (2019). https://doi.org/10.1590/s1517-707620190001.0639   DOI
24 W. Gou, H. Zhamg, H. Li, F. Liu, and J. Lian, Wear, 412-413, 120 (2018). https://doi.org/10.1016/j.wear.2018.07.023   DOI
25 S. Hattori, T. Ogso, Y. Minami, and I. Yamada, Wear, 265, 1619 (2008). https://doi.org/10.1016/j.wear.2008.03.012   DOI
26 D. Yan, J. Wang, F. Liu, and D. Chen, Wear, 303, 419 (2013). https://doi.org/10.1016/j.wear.2013.03.024   DOI
27 C. Sedano-de la Rosa, M. Vite-Torres, J. G. Godinez-Salcedo, E. A. Gallardo-Hernandez, R. Cuamatzi-Melendez, and L. I. Farfan-Cabrera, Wear, 376-377, 549 (2017). https://doi.org/10.1016/j.wear.2016.12.063   DOI
28 A. K. Krella, D. E. Zakrzewska, and A. Marchewicz, Wear, 452-453, 203-295 (2020). https://doi.org/10.1016/j.wear.2020.203295
29 S. Z. Luo, Y. G. Zheng, M. C. Li, Z. M. Yao, and W. Ke, Corrosion, 59, 597 (2003). https://doi.org/10.5006/1.3277590   DOI
30 C. Lin, Q. Zhao, X. Zhao, and Y. Yang, Int. J. Georesources Environ., 4, 1 (2018). https://doi.org/10.15273/ijge.2018.01.001
31 KS D 3752, Carbon steel for machine structural use (2019).
32 S. Y. Hur, K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 18, 129 (2019). https://doi.org/10.14773/cst.2019.18.4.129   DOI
33 H. Y. Yang, Advanced Metallic Materials, p. 182, Munundang, Seoul, Korea (2011).
34 D. N. Staicopolus, J. Electrochem. Soc., 110, 1121 (1963). https://doi.org/10.1149/1.2425602   DOI
35 N. Ochoa, C. Vega, N. Pebere, J. Lacaze, and J. L. Brito, Mater. Chem. Phys., 156, 198 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.047   DOI