• Title/Summary/Keyword: Electrochemical parameters

Search Result 339, Processing Time 0.021 seconds

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine;Fiala, Abdelali;Ladouani, Hayet Brahim;Allal, Hamza
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.237-253
    • /
    • 2022
  • The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

Determination of Adsorption Isotherms of Hydroxide ata Platinum Electrode Interface Using the Phase-Shift Method and Correlation Constants

  • Chun, Jin-Y.;Chun, Jang-H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • The phase-shift method and correlation constants, i.e., the electrochemical impedance spectroscopy (EIS) techniques for studying linear relationships between the behaviors (${\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and those (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}{\theta}{\geq}0$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at noble and transition-metal/aqueous solution interfaces. At the Pt/0.1 MKOH aqueous solution interface, the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=5.6{\times}10^{-10}\;mol^{-1}\;at\;0{\leq}{\theta}<0.81$, $K=5.6{\times}10^{-9}{\exp}(-4.6{\theta})\;mol^{-1}\;at\;0.2<{\theta}<0.8$, and $K=5.6{\times}10^{-10}{\exp}(-12{\theta})\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$, interaction parameters (g = 4.6 for the Temkin and g = 12 for the Frumkin adsorption isotherm), rates of change of the standard free energy ($r=11.4\;kJ\;mol^{-1}$ for g=4.6 and $r=29.8\;kJ\;mol^{-1}$ for g=12), and standard free energies (${\Delta}G_{ads}^0=52.8\;kJ\;mol^{-1}\;at\;0{\leq}{\theta}<0.81,\;49.4<{\Delta}G_{\theta}^0<56.2\;kJ\;mol^{-1}\;at\;0.2<{\theta}<0.8$ and $80.1<{\Delta}_{\theta}^0{\leq}82.5\;kJ\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$) of OH for the anodic $O_2$ evolution reaction (OER) are also determined using the phase-shift method and correlation constants. The adsorption of OH transits from the Langmuir to the Frumkin adsorption isotherm (${\theta}\;vs.E$), and vice versa, depending on the electrode potential (E) or the fractional surface coverage (${\theta}$). At the intermediate values of ${\theta}$, i.e., $0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms and related electrode kinetic and thermodynamic parameters. They are useful and effective ways to study the adsorptions of intermediates (H, OH) for the sequential reactions (HER, OER) at the interfaces.

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

Analytical polarization curve of DMFC anode

  • Kulikovsky, A.A.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2013
  • A model for DMFC anode performance is developed. The model takes into account potential--independent methanol adsorption on the catalyst surface, finite rate of proton transport through the anode catalyst layer (ACL), and a potential loss due to methanol transport in the anode backing layer. An approximate analytical half--cell polarization curve is derived and equations for the anode limiting current density are obtained. The polarization curve is fitted to the curves measured by Nordlund and Lindbergh and parameters resulted from the fitting are discussed.

Electrokinetic 기법을 이용한 토양 중 납의 안정화

  • 조용실;김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.351-354
    • /
    • 2002
  • In this study, variation of electrochemical parameters and characteristics of lead immobilization due to phosphoric acid injection in soil were studied during electrokinetic remediation of lead contaminated soil. TCLP result showed about 100% of soil was satisfied TCLP regulation criteria. And injected ion from cathode reservoir by ionmigration was proportionate to concentration of phosphoric acid and elapsed time. Therefore, when removal is infeasible or not cost-effective, in situ immobilization method would be more effective.

  • PDF

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Cyclic Voltammetric Investigation of Interactions between Bisnitroaromatic Compounds and ds.DNA

  • Janjua, Naveed Kausar;Akhter, Zareen;Jabeen, Fariya;Iftikhar, Bushra
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.153-159
    • /
    • 2014
  • Herein, the cyclic voltammetric (CV) investigations of structurally similar bisnitrocompounds (N3, N4, N5, N6, having different-$CH_2$-spacer length) is presented. CV study offered interesting interactional possibilities of bisnitrocompounds with chicken blood ds.DNA at physiological pH 4.7 and human body temperature, 310 K. The results indicated strong interaction by these symmetric molecules with ds.DNA and strength of binding is found to depend on length of $CH_2$ spacer group in their molecular structure. Thermodynamics derived from electrochemical binding parameters also favored the irreversible interactions. Moreover, threading intercalation mode of binding is suggested based on thermodynamic and kinetic binding parameters extracted from CV studies.

Metallization on Patterned Substrate (패턴된 기판에 금속 배선 형성)

  • 김남석;강탁;남승우;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.309-319
    • /
    • 1995
  • The substrate patterned with the dry film has the cavity which has the $90^{\circ}$ wall angle. Electroplating Cu on this patterned substrate has the differrent shape history with the electrochemical parameters. By potential theory model, the reason of the variation of the shape change with the these parameters was investigated. The shape history could be explained by the current flow and the correlated area effects. By embedding the Ni layer between the Cu layers, shape history with the time was obtained experimentally and the results was compared with the numerical analysis by BEM. The adhesive Cr-Cu film in TAB application was etched with the various condition. The best condition for the etchant of the Cr-Cu film was found.

  • PDF

Determination of ECM parameter Base on surface Roughness for Ni base Heat Resistant Alloy (Ni기 내열합금의 표면조도에 의한 전해가공조건의 설정)

  • 이상준;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.256-262
    • /
    • 1999
  • By development of heat resistant alloy, there are much improvement of gas turbine engines. But heat resistant alloy has difficulty of machining. therefore, ECM (Electrochemical Machining) is used for Machining of 3 dimensional curved surface of Ni-base alloy. The purpose of this paper is to investigate ECM parameters that make tile good surface for Ni-base alloy blade. For this purpose, we have been investigated that center line average surface roughness(R$\sub$a/), average R$\sub$a/, Maximum R$\sub$a/ and Standard deviation of R$\sub$a/ for measuring positions is influenced on ECM parameters such as electrolyte types, dwell time, electrolyte pressure and sort of electrolyte for Inconel 718 and Waspaloy.

  • PDF