• Title/Summary/Keyword: Electrochemical modification

Search Result 157, Processing Time 0.026 seconds

Porous Si Layer by Electrochemical Etching for Si Solar Cell

  • Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.616-621
    • /
    • 2009
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

Electrochemical Promotion of Pt Catalyst for The Oxidation of Carbon Monoxide

  • Shin, Seock-Jae;Kang, An-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.187-195
    • /
    • 2000
  • Electrochemical promotion of the reaction rate was investigated for CO oxidation in a solid electrolyte catalytic reactor where a thin film of Pt was deposited on the yttria stabilized zirconia as an electrode as well as a catalyst. It was shown under open circuit condition that potential was a mixed potential of $O_2$exchange reaction and electrochemical reaction induced by CO. The effect of electrochemical modification on the CO oxidation rate was studied at various overpotentials and $P_{CO}$$P_{O2}$.

  • PDF

Surface Modification of Multi-walled Carbon Nanotubes for Enhancement of Dispersion and Electrochemical Properties

  • Kim, Young-Ja;Zhang, Wentao;Lee, Hong-Ro;Kim, Jong-Hyee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.194-198
    • /
    • 2008
  • Several methods for improving dispersion of carbon nanotubes (CNTs) have been investigated. CNTs modified by acids and hydrogen peroxide ($H_2O_2$) showed improved dispersion. From SEM micrographs and photos of dispersion, CNTs modified with nitric acid and $H_2O_2$, showed no agglomeration in solution even standing for 4 months, which means successfully improved dispersion property. TEM micrographs of surface modified single CNT treated with 69% $HNO_3$ in boiling acid solution as the optimum method were obtained. For confirmation of CNTs' application to EDLC electrode materials, characteristics of EDLC have been analyzed by cyclic voltammetry curve, specific capacitance of unit cell, electrode discharge curves and AC impedance curve. From the results, it could be confirmed that electrochemical properties of CNTs were enhanced after surface modification with 69% $HNO_3$ acid treatment.

The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs)

  • Choi, Hee Seon;Kim, Keon;Yi, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1305-1311
    • /
    • 2014
  • The nickel oxide, the most widely used cathode material for the molten carbonate fuel cell (MCFC), has several disadvantages including NiO dissolution, poor mechanical strength, and corrosion phenomena during MCFC operation. The surface modification of NiO with lanthanum maintains the advantages, such as performance and stability, and suppresses the disadvantages of NiO cathode because the modification results in the formation of $LaNiO_3$ phase which has high conductivity, stability, and catalytic activity. As a result, La-modified NiO cathode shows low NiO dissolution, high degree of lithiation, and mechanical strength, and high cell performance and catalytic activity in comparison with the pristine NiO. These enhanced physico-chemical and electrochemical properties and the durability in marine environment allow MCFC to marine application as a auxiliary propulsion system.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

Electrochemical Properties of LiNi0.8Co0.16Al0.04O2 and Surface Modification with Co3(PO4)2 as Cathode Materials for Lithium Battery

  • Ryu, Kwang-Sun;Lee, Sang-Hyo;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1737-1741
    • /
    • 2008
  • The electrochemical and thermal stability of $LiNi_{0.8}Co_{0.16}Al_{0.04}O_2$ were studied before and after $Co_3(PO_4)_2$ coating. Different to conventional coating material such as $ZrO_2$ or AlPO4, the coating layer was not detected clearly by TEM analysis, indicating that the $Co_3(PO_4)_2$ nanoparticles effectively reacted with surface impurities such as $Li_2CO_3$. The coated sample showed similar capacity at a low C rate condition. However, the rate capability was significantly improved by the coating effect. It is associated with a decrease of impedance after coating because impedance can act as a major barrier for overall cell performances in high C rate cycling. In the DSC profile of the charged sample, exothermic peaks were shifted to high temperatures and heat generation was reduced after coating, indicating the thermal reaction between electrode and electrolyte was sucessfully suppressed by $Co_3(PO_4)_2$ nanoparticle coating.

Effects of Shot Peening Time on Microstructure and Electrochemical Characteristics for Cu Alloy (쇼트피닝 시간에 따른 동합금의 조직특성 및 전기화학적 특성의 변화)

  • Han, Min-Su;Hyun, Koang-Yong;Kim, Seong-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.545-551
    • /
    • 2013
  • In this study, shot peening technique was employed with shot peening time for durability improvement and surface modification of copper alloy to investigate the electrochemical characteristics and microstructural variations. As a result of shot peening, roughness was distributed over the surface, and homogenization phenomenon was observed with increasing shot peening time due to the enhancement of coverage. The results revealed that hardness increased for shot peened specimens and particularly 3.5 mins of shot-peening time represented a hardness improvement of 52 %, showing similar electrochemical characteristics to that of the un-peened surface.

A Study on Surface Modification of Nanorod Electrodes for Highly Sensitive Nano-biosensor (고감도 나노-바이오센서를 위한 나노로드 전극 표면 개질에 관한 연구)

  • Lee, Seung Jun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.185-189
    • /
    • 2016
  • Among many kinds of bioaffinity sensors, the avidin-biotin system has been widely used in a variety of biological applications due to the specific and high affinity interaction of the system. In this work, gold nanorods with high surface area were explored as electrodes in order to amplify the signal response from the avidin-biotin interaction which can be further utilized for avidin-biotin biosensors. Electrochemical performance of electrodes modified with nanorods and functionalized with avidin in response to interactions with biotin at various concentrations using $[Fe(CN)_6]^{3-/4-}$ couple as the redox probe were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A very low biotin concentration of less than 1 ng/mL could be detected using the electrodes modified with nanorods.