• 제목/요약/키워드: Electrochemical corrosion

검색결과 1,099건 처리시간 0.023초

Comparative study on Corrosion Inhibition of Vietnam Orange Peel Essential Oil with Urotropine and Insight of Corrosion Inhibition Mechanism for Mild Steel in Hydrochloric Solution

  • Bui, Huyen T.T.;Dang, Trung-Dung;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.69-81
    • /
    • 2019
  • The corrosion inhibiting mechanism of Vietnam orange peel essential oil (OPEO) for mild steel in 1 N HCl solution was investigated elaborately. Corrosion inhibition ability of OPEO was characterized by electrochemical polarization, electrochemical impedance spectroscopy (EIS), and weight loss method. In the corrosive solution, OPEO worked as a mixed inhibitor and the inhibition efficiency of OPEO increased with the increase of its concentration. High inhibition efficiencies over 90% were achieved for the concentration of 3 - 4 g/L OPEO, comparable to that of 3.5 g/L urotropine (URO), a commercial corrosion inhibitor for acid media used in industry. By using adsorption isotherm models (Langmuir, Temkin and Frumkin), thermodynamic parameters of adsorption were calculated. The obtained results indicated physical adsorption mechanism of OPEO on the steel surface. The components responsible for the corrosion inhibition activity of OPEO were not only D-limonene, but also other compounds, which contain C=O, C=C, O-H, C-O-C, -C=CH and C-H bonding groups in the molecules.

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther;Lapeire, Linsey;Maurice, Vincent;De Graeve, Iris;Klein, Lorena;Marcus, Philippe;Verbeken, Kim;Kestens, Leo;Gonzalez-Garcia, Yaiza;Mol, Arjan;Terryn, Herman
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2017
  • When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

Corrosion Behavior of Carbon Steel in Diluted Sulfuric Acid based on Seawater

  • Kim, Mun Su;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.78-85
    • /
    • 2019
  • The International Maritime Organization (IMO) will administer a new 0.5% global sulfur cap on fuel content from 1 January 2020, lowering from the present 3.5% limit. Seawater $SO_x$ (sulfur oxide) scrubbing is especially spray scrubbing and a promising alternative to complying with the IMO regulation. However, the ionization of $SO_2$ (sulfur dioxide) and the $H_2SO_4$ (sulfuric acid) formed from $SO_3$ (sulfur trioxide) is proposed to accelerate corrosion of the internal seawater pipe. Apparently, the corrosion of the scrubber seawater piping system occurs in a severe and frequent manner. Hence, in this study, electrochemical measurement and weight loss of carbon steel (used as seawater pipe in most of the ships) in diluted sulfuric acid solution were investigated to determine corrosion rate, corrosion current density, corrosion potential, electrochemical behavior, and impressed-current density. Accordingly, the corrosion rate of carbon steel sheet in various diluted sulfuric acid solutions was observed to be greater than that in natural seawater, thus suggesting the fundamental data to deal with corrosion problems in scrubber seawater pipe.

Sustainable Development of Palm Oil: Synthesis and Electrochemical Performance of Corrosion Inhibitors

  • Porcayo-Calderon, J.;Rivera-Munoz, E.M.;Peza-Ledesma, C.;Casales-Diaz, M.;de la Escalera, L.M. Martinez;Canto, J.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.133-145
    • /
    • 2017
  • Palm oil production is among the highest worldwide, and it has been mainly used in the food industry and other commodities. Currently, a lot of palm oil production has been destined for the synthesis of biodiesel; however, its use in applications other than the food industry has been questioned. Thereby for a sustainable development, in this paper the use of palm oil of low quality for corrosion inhibitors synthesis is proposed. The performance of the synthesized inhibitors was evaluated by using electrochemical techniques such as open circuit potential measurements, linear polarization resistance and electrochemical impedance spectroscopy. The results indicate that the fatty amides from palm oil are excellent corrosion inhibitors with protection efficiencies greater than 98%. Fatty amides molecules act as cathodic inhibitors decreasing the anodic dissolution of iron. When fatty amides are added, a rapid decrease in the corrosion rate occurs due to the rapid formation of a molecular film onto carbon steel surface. During the adsorption process of the inhibitor a self-organization of the hydrocarbon chains takes place forming a tightly packed hydrophobic film. These results demonstrate that the use of palm oil for the production of green inhibitors promises to be an excellent alternative for a sustainable use of the palm oil production.

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming;Dun, Yuchao;Zhang, Guodong;Zhao, Xuhui;Zuo, Yu
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.175-182
    • /
    • 2017
  • Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

Corrosion Monitoring for Offshore Wind Farm's Substructures by using Electrochemical Noise Sensors

  • Soh, Joon-Young;Lee, Min-Woo;Kim, Su-Kyung;Kim, Do Hyung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.615-618
    • /
    • 2016
  • Electrochemical noise(EN) has been used to analyze the deterioration of coating films of offshore wind substructures. In this study, prototype sensors using EN have been developed to detect the corrosion rate. To verify the reliability of sensors, experiments were conducted both in the laboratory and offshore using probe and standard samples. New analysis and data processing techniques show that the sensor can provide useful information about the corrosion rate.

Effect of Microstructure on Corrosion Behavior of TiN Hard Coatings Produced by Two Grid-Attached Magnetron Sputtering

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.15-22
    • /
    • 2006
  • The introduction of two-grid inside a conventional process system produces a reactive coating deposition and increases metal ion ratio in the plasma, resulting in denser and smoother films. The corrosion behaviors of TiN coatings were investigated by electrochemical methods, such as potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in deaerated 3.5% NaCl solution. Electrochemical tests were used to evaluate the effect of microstructure on the corrosion behavior of TiN coatings exposed to a corrosive environment. The crystal structure of the coatings was examined by X-ray diffractometry (XRD) and the microstructure of the coatings was investigated by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). In the potentiodynamic polarization test and EIS measurement, the corrosion current density of TiN deposited by two grid-attached magnetron sputtering was lower than TiN deposited by conventional magnetron type and also presented higher Rct values during 240 h immersion time. It is attributed to the formation of a dense microstructure, which promotes the compactness of coatings and yields lower porosity.

Investigation of the Biodegradable Mechanism of Pure Magnesium Using Electrochemical Impedance Spectroscopy Technique

  • Kim, Woo-Cheol;Kim, Seon-Hong;Kim, Jung-Gu;Kim, Young-Yul
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.43-53
    • /
    • 2016
  • In this study, electrochemical impedance spectroscopy (EIS) was used to examine the changes in the electrochemical properties of biodegradable pure magnesium implanted into Sprague-Dawley rats for three days. The in vivo test results were compared with those of the in vitro tests carried out in Hank's, dilute saline and simulated body fluid (SBF) solutions. The in vitro corrosion rates were 20~1700 fold higher, as compared to the in vivo corrosion rates. This discrepancy is caused by biomolecule adsorption on the surface, which prevents the transport of water into the magnesium surface on in vivo testing. Among the in vitro experimental conditions, the corrosion rate in SBF solution had the least difference from the in vivo implanted specimen.

Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels

  • Muhammad Ishtiaq;Aqil Inam;Saurabh Tiwari;Jae Bok Seol
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.10.1-10.15
    • /
    • 2022
  • The effect of carbon doping contents on the microstructure, hardness, and corrosion properties of heat-treated AISI steel grades of plain carbon steel was investigated in this study. Various microstructures including coarse ferrite-pearlite, fine ferrite-pearlite, martensite, and bainite were developed by different heat treatments i.e. annealing, normalizing, quenching, and austempering, respectively. The developed microstructures, micro-hardness, and corrosion properties were investigated by a light optical microscope, scanning electron microscope, electromechanical (Vickers Hardness tester), and electrochemical (Gamry Potentiostat) equipment, respectively. The highest corrosion rates were observed in bainitic microstructures (2.68-12.12 mpy), whereas the lowest were found in the fine ferritic-pearlitic microstructures (1.57-6.36 mpy). A direct correlation has been observed between carbon concentration and corrosion rate, i.e. carbon content resulted in an increase in corrosion rate (2.37 mpy for AISI 1020 to 9.67 mpy for AISI 1050 in annealed condition).