• Title/Summary/Keyword: Electrochemical cell

Search Result 1,542, Processing Time 0.031 seconds

Electrochemical Promotion of Pt Catalyst for The Oxidation of Carbon Monoxide

  • Shin, Seock-Jae;Kang, An-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.187-195
    • /
    • 2000
  • Electrochemical promotion of the reaction rate was investigated for CO oxidation in a solid electrolyte catalytic reactor where a thin film of Pt was deposited on the yttria stabilized zirconia as an electrode as well as a catalyst. It was shown under open circuit condition that potential was a mixed potential of $O_2$exchange reaction and electrochemical reaction induced by CO. The effect of electrochemical modification on the CO oxidation rate was studied at various overpotentials and $P_{CO}$$P_{O2}$.

  • PDF

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

The biofuel cell: development of new materials for composing electron mediator-free and electrochemical active bacteria-free biofuel cell

  • Park Doohyun;Park Yongkeun;Kim Sikyun;Lee Daesik;Shin Inho
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.92-99
    • /
    • 2000
  • In this study biofuel cell is classified into 5 generation fuel cell system based on structural and structural difference. I optionally named the biofuel cell with electron mediators prototype, that with electrochemical active bacterium 2nd generation, that with modified electrode with NR 3rd generation, that with catalytic active electrode 4th generation, and that using air as a catholyte instead of ion selective membrane and cathode, respectively. The electricity production was compared among 5 types biofuel cell and was confirmed to be $50-100\%$ higher in 4th and 5th generation than in 1st to 3rd generation.

  • PDF

Complex Capacitance Analysis of Impedance Data and its Applications (임피던스 복소캐패시턴스 분석법의 이론 및 응용)

  • Jang, Jong-Hyun;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.223-234
    • /
    • 2010
  • In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.

Electrochemical Approaches to Dye-Sensitized Solar Cells (염료감응 태양전지의 전기화학적 접근을 통한 해석)

  • Jo, Yim-Hyun;Lim, Jeong-Min;Nam, Hee-Jin;Jun, Yong-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.301-310
    • /
    • 2009
  • This paper describes one of the hot issues in solar cell studies, dye-sensitized solar cell. DSSC is a kind of photoelectrochemical cells. Therefore, it is quite different from the conventional solar cells which originate from pn semiconductor theory, although its mechanism can be explained with the theory. This paper describes the difference between the conventional semiconductor approaches and a newly adapted one for DSSC. Especially, electrochemical analysis methods such as electrochemical impedance analysis and cyclic voltammogram are briefly introduced, which are commonly used for DSSC analysis.