• Title/Summary/Keyword: Electrochemical Polishing(ECP)

Search Result 8, Processing Time 0.023 seconds

Vibration Electrochemical Polishing for Localized Surface Leveling (미세표면 평활화를 위한 진동 전기화학 폴리싱)

  • Kim, Uksu;Kim, Youngbin;Park, Jeongwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • This study demonstrates a novel hybrid surface polishing process combining non-traditional electrochemical polishing(ECP) with external artificial ultrasonic vibration. ECP, typical noncontact surface polishing process, has been used to improve surface quality without leaving any mechanical scratch marks formed by previous mechanical processes, which can polish work material by electrochemical dissolution between two electrodes surfaces. This research suggests vibration electrochemical polishing(VECP) assisted by ultrasonic vibration for enhancing electrochemical reaction and surface quality compared to the conventional ECP. The localized roughness of work material is measured by atomic force microscopy(AFM) for detailed information on surface. Besides roughness, overall surface quality, material removal rate(MRR), and productivity etc. are compared with conventional ECP.

Vibration Electrochemical Polishing (VECP) for Improved Surface Defects of Stainless Steel (스테인리스강의 표면 결점 개선을 위한 진동 전기화학 폴리싱)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.795-799
    • /
    • 2013
  • This paper describes a novel hybrid surface polishing process combining non-traditional electrochemical polishing (ECP) with external artificial ultrasonic vibration. The purpose of this study is to develop an easier method for improving stainless steel surfaces. To this end, vibration electrochemical polishing (VECP), a novel ultrasonic manufacturing process, for enhancing electrochemical reaction and surface quality compared with that achieved using conventional ECP is suggested. In addition, for finding the optimized experimental conditions, the two methods are compared under various current densities. Localized roughness of the work material is measured with atomic force microscopy (AFM) and scanning electron microscopy (SEM) for obtaining detailed surface information.

A Study on the Optimized Copper Electrochemical Plating in Dual Damascene Process

  • Yoo, Hae-Young;Chang, Eui-Goo;Kim, Nam-Hoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.225-228
    • /
    • 2005
  • In this work, we studied the optimized copper thickness in Cu ECP (Electrochemical Plating). In order to select an optimized Cu ECP thickness, we examined Cu ECP bulge (bump, hump or over-plating amount), Cu CMP dishing and electrical properties of via hole and line trench over dual damascene patterned wafers split into different ECP Cu thickness. In the aspect of bump and dishing, the bulge increased according as target plating thickness decreased. Dishing of edge was larger than center of wafer. Also in case of electrical property, metal line resistance distribution became broad gradually according as Cu ECP thickness decreased. In conclusion, at least $20\%$ reduced Cu ECP thickness from current baseline; $0.8\;{\mu}m$ and $1.0\;{\mu}m$ are suitable to be adopted as newly optimized Cu ECP thickness for local and intermediate layer.

Study on Electrochemical Polishing for Stainless Steel using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강의 전기화학연마)

  • 이동활;박정우;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric, sulfuric and distilled water has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

  • PDF

Study on Electrochemical Polishing for Stainless Steel 300 Series using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강 300 계열의 전기화학연마)

  • 이동활;박정우;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.388-393
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric acid 50% in vol., sulfuric acid 20% in vol. and distilled water 30% in vol. has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

Machining Characteristics according to Electrochemical Polishing (ECP) Conditions of Stainless Steel Mesh (스테인리스 망의 전기화학 폴리싱(ECP) 조건에 따른 가공 특성)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.41-48
    • /
    • 2015
  • Stainless steel mesh has been used as a filter in various fields, including domestic, medical, etc. However, the surface before machining may have an adverse effect the product quality and performance because it is not smooth. Especially, adsorbed impurities in the surface result in difficulty in cleaning. Therefore, in this paper, we propose an improved surface quality through electrochemical polishing (ECP). Two electrodes, composed of STS304 (anode) and copper (cathode) underwent machining with two conditions according to polishing time and current density. As the polishing time and current density increase, the surface of curvature decreases, and roughness and material removal rate (MRR) improves. The machined surface roughness and image were obtained through the atomic force microscope (AFM) and stereoscopic microscope. The study also analyzed hydrophilic effect through contact angles. This obtains corrosion resistance, smoothness, hydrophilic property, etc.

Cu Plating Thickness Optimization by Bottom-up Gap-fill Mechanism in Dual Damascene Process (Dual Damascene 공정에서 Bottom-up Gap-fill 메커니즘을 이용한 Cu Plating 두께 최적화)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.93-94
    • /
    • 2005
  • Cu metallization using electrochemical plating(ECP) has played an important role in back end of line(BEOL) interconnect formation. In this work, we studied the optimized copper thickness using Bottom-up Gap-fill in Cu ECP, which is closely related with the pattern dependencies in Cu ECP and Cu dual damascene process at 0.13 ${\mu}m$ technology node. In order to select an optimized Cu ECP thickness, we examined Cu ECP bulge, Cu CMP dishing and electrical properties of via hole and line trench over dual damascene patterned wafers split into different ECP Cu thickness.

  • PDF