• 제목/요약/키워드: Electrochemical Efficiency

검색결과 685건 처리시간 0.022초

Ti-Ga 합금 위에 형성된 산화티타늄 피막의 광 전기분해 특성에 관한 연구 (Photoelectrochemical Behaviour of Oxide Films on Ti-Ga2O3 Alloy)

  • 박성용;조병원;윤경석;이응조
    • 한국수소및신에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 1992
  • With the aim to obtain $TiO_2$ films with an increased photorespones and absorbance in the visible region of the solar spectrum, the direct oxidation of titanium alloys were performed. In this study, $Ti-Ga_2O_3$ alloy was prepared by mixing, pressing and arc melting of appropriate amounts of titanium and $Ga_2O_3$ powder. Electrochemical measurements were performed in three electrode cell using electrolyte of 1M NaOH solution. The oxide films on $Ti-Ga_2O_3$ alloy was composed of $Ti_2O$, TiO, $TiO_2$, $Ga_2TiO_5$. The free energy efficiency (${\eta}e$) of $Ti-Ga_2O_3$ oxide films had 0.8~1.3 % and were increased with the increase of $Ga_2O_3$ content up to 10wt %. The onset potential ($V_{on}$) had -0.8V~0.9V ranges and were shifted to anodic direction with the increase of $Ga_2O_3$ content. The spectral response of Ti-$Ga_2O_3$ oxides were similar to the response of the $TiO_2$ and their $E_g$ were observed to 2.90~3.0eV. Variations of onset potential($V_{on}$) associated with electrolyte pH were -59mV/pH. This probably reflects the nature of the bonding of $OH^-$ ion to the $TiO_2$ surface, a common phenomena in the transition-metal oxides.

  • PDF

SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석 (A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production)

  • 변현승;한단비;박성룡;조종표;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용 (Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery)

  • 김찬미;김선경;장한권;길대섭;장희동
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.42-48
    • /
    • 2018
  • 리튬이온전지의 음극재로 높은 이론적인 용량과 낮은 방전 전위 및 무독성을 가진 실리콘이 높은 관심을 받고 있다. 본 연구에서는 리튬이온전지의 고효율 음극재로 활용을 위한 실리콘-탄소나노튜브-탄소(Si-CNT-C) 복합체를 제조하였다. 복합체 제조를 위해서는 에어로졸 자기조립과 후 열처리 공정을 사용하였다. 제조된 Si-CNT-C 복합체는 구형이었으며 평균 입자크기는 $2.72{\mu}m$이었다. 복합체의 크기는 실리콘 및 탄소나노튜브의 농도가 증가할수록 커지는 것을 확인하였다. Si-CNT-C 복합체는 탄소나노튜브와 글루코스에서 탄화된 탄소가 실리콘 입자들을 중심으로 표면에 부착된 형태이었다. 제조된 Si-CNT-C 복합체는 전기화학 분석을 통해 순수한 실리콘보다 우수한 사이클 성능을 보여주고 있음을 확인하였다.

가스상 암모니아 측정을 위한 분석방법별 특성 연구 (Analysis Methods for Measurement of Ammonia Concentration)

  • 사재환;윤석경;노기환;전의찬
    • 한국대기환경학회지
    • /
    • 제24권1호
    • /
    • pp.43-54
    • /
    • 2008
  • Management and control of ammonia at the sources and ambient largely depend on sampling and measurement techniques. Good sampling and measurement techniques provide high quality data. The main purpose of the study is compare the analytical characteristics of the Indolphenol method which is one of the standard method in Korea with automatic analyzers for continued measuring gaseous ammonia. For comparison with other analytical methods, the verification test was designed to evaluate performance parameters; linearity, absorption efficiency, reproducibility and repeatability test, accuracy, and response time test. $R^2$ of calibration curve using IPM and CLM was very high (value is 1.000), but for EcSM $R^2$ value was estimated to be lower than IPM and CLM (as 0.991). The RSD of the CLM ranged from 0.1 to 2.3% over the nine concentration levels measured, %Ds was 0.1 to 10.7%, and average RA over all the measurements was 3.3%. The RSD of IPM and EcSM was ranged from 1.0 to 8.1, 3.9 to 14.0 respectively, and average RA were 8.71, 4.9% respectively. Rise in response times of EcSM was estimated to be 1 minute. It is found to be more sensitive than response time (which ranged from 2 to 9 minute) of CLM. For ammonia concentration measured using the IPM and the CLM from the same ammonia source, linear regression of IPM versus CLM show a slope of 0.805, an intercept of 637 ppb, and $R^2$ of 0.868.

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

(La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구 (A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes)

  • 지종섭;김창희;강용;심규성
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.627-631
    • /
    • 2005
  • 고온수증기 전기분해의 양극물질로 이용될 수 있는 $(La_{0.8}Sr_{0.2})_{0.95}MnO_3$/yttria-stabilized zirconia(LSM/YSZ) 복합체 전극을 x-ray diffractometry, scanning electron microscopy 그리고 galvanodynamic, galvanostatic polarization method로 연구하였다. 이런 목적으로 perovskite-type의 LSM 물질은 공침법을 이용하여 제조하였으며, 8 mol% YSZ와 몰분율을 달리하여 복합체 전극을 합성하였다. LSM/YSZ 복합체 전극은 평판의 YSZ 전해질에 LSM/YSZ 복합체를 스크린 프린팅 후 $1,100^{\circ}C$에서 열처리 코팅하여 제조하였다. 실험결과로부터 LSM/YSZ 복합체 전극의 전기화학적 특성은 전극을 이루는 삼상계면의 구조와 전기분해 온도에 영향을 받는다는 것을 확인하였다.

Konjac Glucomannan Derived Carbon Aerogels for Multifunctional Applications

  • Lian, Jie;Li, Jiwei;Wang, Liang;Cheng, Ru;Tian, Xiuquan;Li, Xue;Zhou, Jian;Duan, Tao;Zhu, Wenkun
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850113.1-1850113.11
    • /
    • 2018
  • Environmental and energy issues have always been a hot topic of global research. Oil leakage has caused great damage to the environment, affecting a wide area and it is difficult to clean up. In most cases, carbon-based adsorbents are typically utilized to remove oil spills because of their economic benefits and high adsorbent efficiency. At the same time, its excellent material properties can also be used for the preparation of supercapacitors. In this paper, the carbon aerogels were prepared by the one-step method. The prepared materials endowed a 3D network structure with a huge number of micropores and mesoporous, and the material is light-weight, stable, hydrophobic and has affinity for oil (17.02 g/g) to the KGM carbon aerogel. Through the physicchemical characterization, the KGM carbon aerogel shows specific surface area is $689m^2/g$, high water contact angle ($136.64^{\circ}$) and excellent reusability (more than 15 cycle times). In addition, we also discussed the electrochemical properties of the material and obtained the specific electrical capacity of 139 F/g under the condition of 1 A/g.

전기변색 성능 향상을 위한 바나듐산화물 막의 결정성 제어 효과 (Crystallinity Control Effects on Vanadium Oxide Films for Enhanced Electrochromic Performances)

  • 김규호;배주원;이태근;안효진
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.385-391
    • /
    • 2019
  • In the present study, vanadium oxide($V_2O_5$) films for electrochromic(EC) application are fabricated using sol-gel spin coating method. In order to optimize the EC performance of the $V_2O_5$ films, we adjust the amounts of polyvinylpyrrolidone(PVP) added to the solution at 0, 5, 10, and 15 wt%. Due to the effect of added PVP on the $V_2O_5$ films, the obtained films show increases of film thickness and crystallinity. Compared to other samples, optimum weight percent(10 wt%) of PVP led to superior EC performance with transmittance modulation(45.43 %), responding speeds(6.0 s at colored state and 6.2 s at bleached state), and coloration efficiency($29.8cm^2/C$). This performance improvement can be mainly attributed to the enhanced electrical conductivity and electrochemical activity due to the increased crystallinity and thickness of the $V_2O_5$ films. Therefore, $V_2O_5$ films fabricated with optimized amount of PVP can be a promising EC material for high-performance EC devices.

리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성 (Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries)

  • 김은지;이성수;이진홍
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.467-471
    • /
    • 2021
  • 본 연구에서는 가교성 작용기가 기능화된 사다리형 폴리실세스키옥산(LPMA64)을 합성하였고, 이를 액상 전해질의 열 가교 공정에 활용하여 유기-무기 하이브리드 겔 고분자 전해질을 제조하였다. 5 wt%의 낮은 LPMA64 고분자 가교제 함량으로도 전해질 내 네트워크 구조가 잘 발달하여, 우수한 형태 안정성과 높은 이온 전도도를 가지는 전해질의 제조가 가능하였다. 하이브리드 겔 고분자 전해질이 적용된 리튬-황 전지는 안정적인 율속과 장수명 성능 및 높은 쿨롱 효율을 나타냈으며, 이는 완화된 리튬 폴리설파이드 셔틀 현상에 기인했다. 본 연구결과는 제조된 유기-무기 하이브리드 겔 고분자 전해질이 리튬-황 전지 응용에 유망한 전해질임을 보여주었다.

재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교 (The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products)

  • 박성철;김용환;신호정;이만승;손성호
    • 자원리싸이클링
    • /
    • 제30권3호
    • /
    • pp.55-62
    • /
    • 2021
  • 국내에서는 1997년 우수 재활용제품(good recycled product, GR) 인증 제도를 도입하여 자원과 에너지 사용효율 개선을 증진하고 있으나 산업계 및 사회 전반적으로 재활용 소재에 대한 인식 부족으로 인해 재활용 제품 사용이 잘되지 않고 있다. 따라서 본 연구에서는 니켈 소재의 국내·외 품질 기준 현황을 조사하였고, 광석으로부터 제조된 황산니켈과 폐리튬이온전지로부터 재소재화 된 황산니켈에 대하여 전해도금 공정에서의 순도 및 전기화학적 특성을 평가하였다. 평가 결과, 전해도금 산업에서 사용 시 재활용 황산니켈과 고순도 황산니켈 시약의 품질은 차이가 없는 것으로 판단된다.