DOI QR코드

DOI QR Code

Konjac Glucomannan Derived Carbon Aerogels for Multifunctional Applications

  • Lian, Jie (State Key Laboratory of Environment-Friendly Energy Materials Southwest University of Science and Technology) ;
  • Li, Jiwei (College of Textiles and Clothing, Qingdao University) ;
  • Wang, Liang (Institute of Chemical Materials China Academy of Engineering Physics) ;
  • Cheng, Ru (State Key Laboratory of Environment-Friendly Energy Materials Southwest University of Science and Technology) ;
  • Tian, Xiuquan (State Key Laboratory of Environment-Friendly Energy Materials Southwest University of Science and Technology) ;
  • Li, Xue (Key Laboratory of Environmental Biology and Pollution Control (Hunan University) Ministry of Education) ;
  • Zhou, Jian (State Key Laboratory of Environment-Friendly Energy Materials Southwest University of Science and Technology) ;
  • Duan, Tao (State Key Laboratory of Environment-Friendly Energy Materials Southwest University of Science and Technology) ;
  • Zhu, Wenkun (State Key Laboratory of Environment-Friendly Energy Materials Southwest University of Science and Technology)
  • Received : 2018.07.19
  • Accepted : 2018.08.29
  • Published : 2018.10.31

Abstract

Environmental and energy issues have always been a hot topic of global research. Oil leakage has caused great damage to the environment, affecting a wide area and it is difficult to clean up. In most cases, carbon-based adsorbents are typically utilized to remove oil spills because of their economic benefits and high adsorbent efficiency. At the same time, its excellent material properties can also be used for the preparation of supercapacitors. In this paper, the carbon aerogels were prepared by the one-step method. The prepared materials endowed a 3D network structure with a huge number of micropores and mesoporous, and the material is light-weight, stable, hydrophobic and has affinity for oil (17.02 g/g) to the KGM carbon aerogel. Through the physicchemical characterization, the KGM carbon aerogel shows specific surface area is $689m^2/g$, high water contact angle ($136.64^{\circ}$) and excellent reusability (more than 15 cycle times). In addition, we also discussed the electrochemical properties of the material and obtained the specific electrical capacity of 139 F/g under the condition of 1 A/g.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, China Postdoctoral Fund, Southwest University of Science and Technology

References

  1. T. Dong, S. Cao and G. Xu, J. Hazard. Mater. 321, 859 (2017). https://doi.org/10.1016/j.jhazmat.2016.10.005
  2. S. E. Allan, B. W. Smith and K. A. Anderson, Environ. Sci. Technol. 46, 2033 (2012). https://doi.org/10.1021/es202942q
  3. M. Chua, K. Chan, T. J. Hocking, P. A. Williams, C. J. Perry and T. C. Baldwin, Carbohydr. Polym. 87, 2202 (2012). https://doi.org/10.1016/j.carbpol.2011.10.053
  4. S. Maiti, I. M. Mishra, S. D. Bhattacharya and J. K. Joshi, Colloids Surf. 389, 291 (2011). https://doi.org/10.1016/j.colsurfa.2011.07.041
  5. B. Ge, X. Zhu, Y. Li, X. Men, P. Li and Z. Zhang, Colloids Surf. 482, 687 (2015). https://doi.org/10.1016/j.colsurfa.2015.05.061
  6. Q. Meng, H. C. Wan, W. K. Zhu, T. Duan and W. T. Yao, ACS Sustain. Chem. 6, 1172 (2018). https://doi.org/10.1021/acssuschemeng.7b03460
  7. A. O. Ifelebuegu and A. Johnson, Crit. Rev. Environ. Sci. Technol. 47, (2017).
  8. C. Wang, S. Yang, Q. Ma, X. Jia and P. C. Ma, Carbon 118, 765 (2017). https://doi.org/10.1016/j.carbon.2017.04.001
  9. H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and R. S. Ruoff, Eur. J. Inorg. Chem. 22, 4421 (2012).
  10. X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu and D. Wu, Adv. Mater. 22, 617 (2010). https://doi.org/10.1002/adma.200902986
  11. X. Yang, Z. Jiang, B. Fei, J. Ma and X. Liu, Electrochim. Acta 282, 813 (2018). https://doi.org/10.1016/j.electacta.2018.06.131
  12. Q. Tian, X. Wang, X. Xu, M. Zhang, L. Wang, X. Zhao, Z. An, H. Yao and J. Gao, Mater. Chem. Phys. 213, 267 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.026
  13. R. Wahi, L. A. Chuah, T. S. Y. Choong, Z. Ngaini and M. M. Nourouzi, Sep. Purif. Technol. 113, 51 (2013). https://doi.org/10.1016/j.seppur.2013.04.015
  14. V. Dave, M. Sheth, S. P. Mccarthy, J. A. Ratto and D. L. Kaplan, Polymer 39, 1139 (1998). https://doi.org/10.1016/S0032-3861(97)00255-3
  15. K. Nishinari, P. A. Williams and G. O. Phillips, Food Hydrocolloids 6, 199 (1992). https://doi.org/10.1016/S0268-005X(09)80360-3
  16. L. Li, B. Li, L. Wu, X. Zhao and J. Zhang, Chem. Commun. 50, 7831 (2014). https://doi.org/10.1039/C4CC03045A
  17. F. Zhu, Food Chem. 256, 419 (2018). https://doi.org/10.1016/j.foodchem.2018.02.151
  18. S. Dai, F. Jiang, H. Corke and N. P. Shah, Food Res. Int. 107, 691 (2018). https://doi.org/10.1016/j.foodres.2018.02.069
  19. Y. Yuan, L. Wang, R. J. Mu, J. Gong, Y. Wang, Y. Li, J. Ma, J. Pang and C. Wu, Carbohydr. Polym. 190, 196 (2018). https://doi.org/10.1016/j.carbpol.2018.02.049
  20. Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu, G. Sun and B. Ding, Acs Nano 9, 3791 (2015). https://doi.org/10.1021/nn506633b
  21. J. Lei, L. Zhou, Y. Tang, Y. Luo, T. Duan and W. Zhu, Mater. 10, 524 (2017). https://doi.org/10.3390/ma10050524
  22. S. Yang, L. Chen, C. Wang, M. Rana and P. C. Ma, J. Colloid Interface Sci. 508, 254 (2017). https://doi.org/10.1016/j.jcis.2017.08.061
  23. X. Rui, H. Tan and Q. Yan, Nanoscale 6, 9889 (2014). https://doi.org/10.1039/C4NR03057E
  24. D. Angelova, I. Uzunov, S. Uzunova, A. Gigova and L. Minchev, Chem. Eng. J. 172, 306 (2011). https://doi.org/10.1016/j.cej.2011.05.114
  25. Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng and K. Mullen, Adv. Mater. 24, 5130 (2012). https://doi.org/10.1002/adma.201201948
  26. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi and L. Qu, Angew. Chem. 51, 11371 (2012). https://doi.org/10.1002/anie.201206554
  27. H. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang and S. H. Yu, Angew. Chem. 51, 5101 (2012). https://doi.org/10.1002/anie.201200710
  28. X. S. Wang, S. Ma, D. Sun, S. Parkin and H. C. Zhou, J. Am. Chem. Soc. 128, 16474 (2006). https://doi.org/10.1021/ja066616r
  29. C. Wenbo, L. Xiaoyan, Z. Junchen, Z. Xinying, L. Beibei and Y. Tiantian, Carbohydr. Polym. 132, 245 (2015). https://doi.org/10.1016/j.carbpol.2015.06.060
  30. Y. Zheng, E. Cao, Y. Zhu, A. Wang and H. Hu, Chem. Eng. J. 295, 477 (2016). https://doi.org/10.1016/j.cej.2016.03.074
  31. C. L. Wirth, V. M. De and J. Vermant, Langmuir 31, 1632 (2015). https://doi.org/10.1021/la504383m
  32. I. Uzunov, S. Uzunova, D. Angelova and A. Gigova, J. Anal. Appl. Pyrolysis 98, 166 (2012). https://doi.org/10.1016/j.jaap.2012.07.007
  33. M. Husseien, A. A. Amer, A. El-Maghraby and N. A. Taha, Int. J. Environ. Sci. Technol. 6, 123 (2009). https://doi.org/10.1007/BF03326066
  34. K. Sathasivam and H. M. H. Mas Rosemal, Water Air Soil Pollut. 213, 413 (2010). https://doi.org/10.1007/s11270-010-0395-z
  35. J. K. Nduka, L. O. Ezenweke and E. T. Ezenwa, Bioresour. Technol. 99, 7902 (2008). https://doi.org/10.1016/j.biortech.2008.01.066
  36. N. A. Yusof, H. Mukhair, E. A. Malek and F. Mohammad, Bioresources 10, 4 (2015).
  37. J. Han, J. H. Kwon, J. W. Lee, H. L. Jin and K. C. Roh, Carbon 118, 431 (2017). https://doi.org/10.1016/j.carbon.2017.03.076
  38. Z. Hao, Y. J. Hu, T. Xing, L. X. Zhong, X. W. Peng and R. C. Sun, Ind. Cro. Prod. 87, 229 (2016). https://doi.org/10.1016/j.indcrop.2016.04.041
  39. F. Ran, K. Shen, Y. Tan, B. Peng, S. Chen, W. Zhang, X. Niu, L. Kong and L. Kang, J. Memb. Sci. 514, 366 (2016). https://doi.org/10.1016/j.memsci.2016.05.011
  40. G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao and Z. Lei, Bioresour. Technol. 197, 137 (2015). https://doi.org/10.1016/j.biortech.2015.07.100