• Title/Summary/Keyword: Electrochemical Detection

Search Result 340, Processing Time 0.028 seconds

Silicon Capacitive Pressure Sensor for Low Pressure Measurements (저 압력 측정을 위한 실리콘 용량형 압력센서)

  • Seo, Hee-Don;Lee, Youn-Hee;Park, Jong-Dae;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • Capacitive pressure sensor for low pressure measurements has been fabricated by using $n^{+}$ epitaxial layer electrochemical etching stop and glass-to-silicon electrostatic bonding technique. The sensor had hybrid configuration of a sensor chip, which consists of sensor capacitor and reference capacitor, and two output signal detection IC chips. A fabricated sensor, with a $1.0{\times}1.0 mm^{2}$ square size and a $10{\mu}m$ thick flat diaphragm, showed a 7.1 pF zero pressure capacitance, and 5.2 % F.S, sensitivity in 10 KPa pressure range. By using a capacitance to voltage converter, the thermal zero shift of 0.051 %F.S./$^{\circ}C$ and the thermal sensitivity shift of 0.12 %F.S./$^{\circ}C$ for temperature range of $5{\sim}45^{\circ}C$ were obtained.

  • PDF

Research Trend of Biochip Sensors for Biomarkers Specific to Diagnostics of Lung Cancer Diseases (폐암 질환 진단에 활용 가능한 바이오마커 검출용 바이오칩 센서 연구 동향)

  • Lee, Sang Hyuk;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.645-651
    • /
    • 2018
  • Lung cancer has the highest death rate of any cancer diseases in Koreans. However, patients often feel difficult to recognize their disease before facing the terminal diagnosis due to the absence of any significant symptoms. Furthermore, the clear detection of an early cancer stage is usually obscure with existing diagnostic methods. For this reason, extensive research efforts have been made on introducing a wide range of biochemical diagnostic tools for the molecular level analysis of biological fluids for lung cancer diagnoses. A chip-based biosensor, one type of the analytical devices, can be a great potential for the diagnosis, which can be used without any further expensive analytical equipments nor skilled analysts. In this mini review, we highlight recent research trends on searching biomarker candidates and bio-chip sensors for lung cancer diagnosis in addition to discussing their future aspects.

Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics (탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성)

  • Kim, Seo Jin;Son, Seon Gyu;Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.456-460
    • /
    • 2021
  • A potentiometric sodium-ion (Na+) sensor was prepared using a screen-printing process with carbon and silver inks. The two-electrode configuration of the sensor resulted in potential differences in Na+ solutions according to Nernstian equation. The obtained Na+-sensor exhibited an ideal Nernstian sensitivity, fast response time, and low limit of detection. The Nernstian response was stable when the sensor was tested for repeatability and long-term durability. The Na+-selective membrane coated onto the carbon electrode selectively passed sodium ions against interfering ions, indicating an excellent selectivity. The portable Na+-sensor was finally fabricated using a printed circuit system, demonstrating the successful measurements of Na+ concentrations in various real samples.

Preparation and Oil Absorption Properties of PAN Based 3D Shaped Carbon Nanofiber Sponge (폴리아크릴로니트릴 기반 3D 탄소나노섬유 스펀지의 제조 및 오일 흡착 특성)

  • Hye-Won Ju;Jin-Hyeok Kang;Jong-Ho Park;Jae-Kyoung Ko;Yun-Su Kuk;Changwoo Nam;Byoung-Suhk Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.217-223
    • /
    • 2023
  • In this work, the preparation and its oil adsorption behavior of polyacrylonitrile-based carbon nanofiber sponge were investigated. The prepared carbon sponges showed excellent selective oil adsorption in the mixture of water and oil, and the adsorption capacity of reused carbon nanofiber sponge was also investigated. Further, carbon nanofiber sponge adsorbent with internally structured channel showed fast oil adsorption behavior due to a capillary phenomenon. After use, sponge adsorbent was heat-treated at 800℃ under N2 and studied the possibility of a sensor for electrochemical detection of 4-aminophenol.

Analysis for explosives in contaminated soil using the electrochemical method (폭발물 오염토양에서 전기화학법을 이용한 RDX 흔적량의 분석)

  • Ly, Suw Young
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.129-134
    • /
    • 2008
  • Cyclic voltammetry (CV) and square wave stripping voltammetry (SW) analysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using the double-stranded ds calf thymus (DNA) mixed in carbon nanotube paste electrode (PE) were provided. The optimum analytical conditions were determined and the peak potential was 0.2 V vs. Ag/AgCl. The linear working ranges of CV (50-75 ug/L) and SW (5-80 ng/L) were obtained. The precisions of RSD in the 10 ug/L was 0.086% (n=15) and the detection limit was 0.65 ng/L ($2.92{\times}10^{-12}M$) (S/N=3) with 300 s adsorption time at the optimum condition. The method was used to determine the presence of explosive chemicals in contaminated soil samples.

Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands

  • Hee-Su Kim;Yong-Pil Cheon;Sung-Ho Lee
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 µM NP (CTL vs 100 nM NP, p<0.05; vs 1 µM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 µM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.

The Optimum Conditions for the Simultaneous Determination of Neurotransmitters in Rat Brain Striatum by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐 뇌의 선조체 중 신경전달물질의 동시분석시 최적 조건)

  • Kang, Jong-Seong;Mun, Min-Seon;Shin, Hyung-Seon;Lee, Soon-Chul
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-220
    • /
    • 1995
  • A simple, efficient and sensitive method was described for the simultaneous determination of catecholamine, indoleamine and related metabolites from the homogenates of the rat brain striatum by HPLC-ECD. The optimum mobile phase on a reverse phase $C_{18}$ column was 35mM sodium acetate buffer(included 10mM citric acid, 0.13mM $Na_4EDTA$, 0.58mM SOS, pH3-4):MeOH=85:15. The column temperature was $30^{\circ}C$. Dopamine(DA), 3, 4-dihydroxyphenyl acetic acid(DOPAC), homovanilic acid(HVA), 5-hydroxyindole acetic acid(5-HIAA), serotonin(5-HT) and noradrenaline(NA) could be separated and analysed to very small amount. The detection limits of this method were 2~10pg per injection for all components. The effects of age and sex of rat on the contents of the catecholamines and their metabolites in rat brain striatum were studied. The levels of DA and 5-HT contents of the 7 week old female rats were higher than those of the 7 week old male rats. As the age of rat increases, the contents of DOPAC increased significantly.

  • PDF

Simultaneous determinations of anthracycline antibiotics by high performance liquid chromatography coupled with radial-flow electrochemical cell (고성능 액체 크로마토그래피/방사흐름 전기화학전지를 이용한 안트라사이클린계 항생제의 동시 정량)

  • Cho, Yonghee;Hahn, Younghee
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.308-314
    • /
    • 2007
  • The analytical method of HPLC with the radial-flow electrochemical cell (RFEC) has been developed to determine doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin simultaneously by employing a reversed-phase chromatography. Anthracyclines were detected at -0.74 V vs. a Ag/AgCl (0.01 M NaCl) reference electrode, a potential of diffusion current plateau in the mobile phase. At a $V_f$ of 1.0 mL/min doxorubicin, epirubicin, daunorubicin and idarubicin appeared at a retention time ($t_r$) of 6.4 min, 7.4 min, 12.7 min and 18.4 min, respectively, while at a $V_f$ of 0.6 mL/min, doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin appeared at a $t_r$ of 9.9 min, 11.5 min, 13.5 min, 19.6 min and 28.7 min, respectively. The linearity between each anthracycline injected ($2.40{\times}10^{-7}M{\sim}1.42{\times}10^{-5}M$) and peak area (charge) was excellent with the square of the correlation coefficient ($R^2$) higher than 0.999. The detection limits were $1.0{\times}10^{-8}M{\sim}1.5{\times}10^{-7}M$ for the five anthracyclines. Within-day precision for the five anthracyclines were in reasonable relative standard deviations less than 3 % ($1.00{\times}10^{-6}M{\sim}1.42{\times}10^{-5}M$) except the lower concentrations less than $0.7{\mu}M$. Solid phase extractions of $1.00{\times}10^{-5}M$ epirubicin, $0.48{\times}10^{-5}M$ nogalamycin and $1.52{\times}10^{-5}M$ daunorubicin from human serum with a $C_{18}$ cartridge resulted in 97 %, 100 % and 90 % of recoveries, respectively.

Analysis of Trace Copper Metal at The Electrode Consisting of Carbon Nanotube using Stripping Voltammetry (벗김전압전류법을 이용한 카본나노튜브 전극에서의 구리 분석)

  • Choi, Chang-Kun;Jung, Young-Sam;Kim, Nack-Joo;Pak, Dae-Won;Chung, Kun-Yong;Kim, Lae-Hyun;Kwon, Yong-Chai
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.933-937
    • /
    • 2012
  • In the present study, we evaluate the sensitivity and optimal stripping voltammetry (SV) conditions of copper (Cu), which is one of the main trace heavy metals inducing the environmental contamination, using carbon nanotube (CNT) electrode. In addition, the reaction mechanism of stripping reaction of Cu is investigated. The electrochemical analyses such as squarewave stripping voltammetry (SWSV) and linear scan voltammetry (LSV) are used for the evaluations. As a result of that, the best SWSV conditions like squarewave amplitude of 15 mV, frequency of 60 Hz, deposition potential of -1.0V vs. Ag/AgCl and deposition time of 200s are determined with the measured Cu sensitivity of $1.824{\mu}A/{\mu}M$. As a driving force affecting the stripping reaction of Cu, surface reaction is more dominant one than diffusion. These results are compared with other reference results and it is confirmed that our suggested CNT electrode gives rise to better Cu sensitivity result than other references.

Electrochemical Determination of Ag(I) Ion at Chemically Modified Carbon-Paste Electrode Containing 1,5,9,13-Tetrathiacyclohexadecane (1,5,9,13-Tetrathiacyclohexadecane 수식전극을 사용한 Ag(I)의 전기화학적 정량)

  • Ha, Kwang Soo;Jang, Mi-Kyeong;Seo, Moo Lyong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.187-195
    • /
    • 1997
  • Chemically modified electrodes(CMEs) for Ag(I) were constructed by incoporating 1,5,9,13-tetrathiacyclohexadecane([16]-ane-$S_4$) with a conventional carbon-paste mixture composed of graphite powder and nujol oil. Ag(I) ion was chemically deposited onto the surface of the modified electrode with [16]-ane-$S_4$ by immersion of the electrode in the acetate buffer solution(pH=4.5) containing $5.0{\times}10^{-4}M$ Ag(I) ion. And then the electrode deposited with Ag(I) was reduced at -0.3V vs. S.C.E. Well-defined stripping voltammetric peaks could be obtained by scanning the potential to the positive direction. The CME surface was regenerated with exposure to 0.1M $HNO_3$ solution and was reused for the determination of Ag(I) ion. When deposition/measurement/regeneration cycles were 10 times, the response could be reproduced with relative standard deviation of 6.08%. In case of differential pulse stripping voltammetry, the calibration curve for Ag(I) was linear over the range of $5.0{\times}10^{-7}{\sim}1.5{\times}10^{-6}M$. And the detection limit was $2.0{\times}10^{-7}M$. Various ions such as Cd(II), Ni(II), Pb(II), Zn(II), Mn(II), Mg(II), EDTA, and oxalate(II) did not influence the determination of Ag(I) ion, except Cu(II) ion.

  • PDF