• 제목/요약/키워드: Electrocatalytic reaction

검색결과 76건 처리시간 0.027초

이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가 (Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC)

  • 조가영;상가라주 샨무감
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

Fabrication of Ti/Ir-Ru electrode by spin coating method for electrochemical removal of copper

  • Kim, Joohyun;Bae, Sungjun
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.646-653
    • /
    • 2019
  • Recovery of valuable metals in the industrial wastewater and sludge has attracted an attention owing to limited metallic resources in the earth. In this study, we firstly fabricated Ti/Ir-Ru electrodes by spin coating technique for effective recovery of Cu in electrowinning process. Two different Ti/Ir-Ru electrodes were fabricated using 100 and 500 mM of precursors (i.e., Ir-Ru). SEM-EDX and AFM revealed that Ir and Ru were homogenously distributed on the surface of Ti plate by the spin coating, in particular the electrode prepared by 500 mM showed distinct boundary line between Ir-Ru layer and Ti substrate. XRD, XPS, and cyclic voltammetry also revealed that characteristics of IrO2, RuO2, and TiO2 and its electrocatalytic property increased as the concentration of coating precursor increased. Finally, we carried out Cu recovery experiments using two Ti/Ir-Ru as anodes in electrowinning process, showing that both anodes showed a complete removal of Cu (1 and 10 g/L) within 6 h reaction, but much higher kinetic rate constant was obtained by the anode prepared by 500 mM. The findings in this study can provide a fundamental knowledge for surface characteristics of Ti/Ir-Ru electrode prepared by spin coating method and its potential feasibility for effective electrowinning process.

전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 영향 (The Manganese Oxide which has Modified Electrochemically Affects in Oxygen Reduction Reaction)

  • 박성호;신현수;김정식;박수길
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.132-137
    • /
    • 2010
  • 본 연구는 KOH 전해질에서 전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 전기화학적 촉매 역할에 대해 고찰하였다. 나노 사이즈 망간 산화물들은 Glassy carbon(GC), Gold(Au) 그리고 Titanium(Ti)로 이루어진 전극에 전해방식으로 석출시켰으며, 각 전극 표면에 나노 사이즈로 균일하게 분포되어 있는 것이 SEM 관찰을 통해서 확인되었다. 망간산화물의 한 종류인 $\gamma$-MnOOH는 산소 환원반응에 수반되는 4-electron 반응에서 촉매 역할을 하는 것을 확인하였다. 망간산화물이 전기화학적으로 석출된 전극들은 전해석출을 하지 않은 전극들에 비해서 양극 전위가 낮아지는 것을 확인할 수 있었다.

Electrocatalytic Oxidation of HCOOH on an Electrodeposited AuPt Electrode: its Possible Application in Fuel Cells

  • Uhm, Sung-Hyun;Jeon, Hong-Rae;Lee, Jae-Young
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Controlled electrodeposition of dendritic nano-structured gold-platinum (AuPt) alloy onto an electrochemically pretreated carbon paper substrate was conducted in an attempt to improve catalyst utilization and to secure an electronic percolation network toward formic acid (FA) fuel cell application. The AuPt catalysts were obtained by potentiostatic deposition. AuPt catalysts synthesized as bimetallic alloys with 60% Au content exhibited the highest catalytic activity towards formic acid electro-oxidation. The origin of this high activity and the role of Au were evaluated, in particular, by XPS analysis. Polarization and stability measurements with 1 mg $cm^{-2}$ AuPt catalyst (only 0.4 mg $cm^{-2}$ Pt) showed 52 mW $cm^{-2}$ and sustainable performance using 3M formic acid and dry air at $40^{\circ}C$.

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.284-293
    • /
    • 2019
  • Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • 한국재료학회지
    • /
    • 제33권2호
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

Dopamine으로 수식된 [Ru(v-bpy)$_3$$^{2+}$와 Vinylbenzoic Acid의 공중합 피막 전극의 전기화학 특성 (Electrochemical Characteristics at Copolymeric film Electrodes of [Ru(v-bpy)$_3$]$^{2+}$ and Vinylbenzoic Acid Modified with Dopamine)

  • 차성극;박유철;임태곤
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.782-788
    • /
    • 2001
  • $[Ru(v-bpy)_3]^{2+}$와 vinylbenzoic acid(vba)의 공중합 피막전극에 dopamine을 반응시켜 수식된 전극을 제작하고 이 고분자의 중합속도와 산화-환원 및 전자전달 특성을 연구하였다. 두 단량체의 몰비가 5:2일 때 공중합속도 상수는 $1.84{ imes}10^{-2}s^{-1}$이고 중합된 피막상에서 두 성분비는 5:1.68이였다. GC/p-$[Ru(V-bpy)_3]^{2+}$/vba-dopamine형의 수식된 전극에서 hydroquinone=quinone+$2H^+2e^-$의 전극반응에 의한 형식전위는 인산염완충용액(pH=7.10)에서 0.17 V이며, 전기촉매반응에서 속도상수($K_{ch}{Gamma}$)는 $2.58{ imes}10^5cms^{-1}$로서 수식되기 전보다 2.41배 큰 값이다. EQCM법에 의한 산화-환원과정에서 질량변화는 수식되기 전보다 $3.28{ imes}10^3$$gmol^{-1}$ 더 크다.

  • PDF

NaBH4 화학적 처리를 통한 백금화 카본 전극의 촉매반응 향상 (Enhanced Electrocatalytic Activity of Platinized Carbon Electrode via NaBH4 Treatment)

  • 윤창석;황성필
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.581-584
    • /
    • 2020
  • The effect of a chemical pretreatment on the surface carbon was investigated using a scanning electron microscope (SEM) and electrochemical methods. Primitive carbon has a reducing power likely due to incompletely oxidized functional groups on the surface. We aim to control this reducing power by chemical treatment and apply for the spontaneous deposition of nanoparticles (NPs). Highly ordered pyrolytic graphite (HOPG) was initially treated with a reducing agent, NaBH4 or an oxidizing agent, KMnO4, for 5 min. Subsequently, the pretreated carbon was immersed in a platinum (Pt) precursor. Unexpectedly, SEM images showed that the reducing agent increased spontaneous PtNPs deposition while the oxidizing agent decreased Pt loading more as compared to that of using bare carbon. However, the amount of Pt on the carbon obviously decreased by NaBH4 treatment for 50 min. Secondly, spontaneous reduction on pretreated glassy carbon (GC) was investigated using the catalytic hydrogen evolution reaction (HER). GC electrode treated with NaBH4 for a short and long time showed small (onset potential: -640 mV vs. MSE) and large overpotential for the HER, respectively. Although the mechanism is unclear, the electrochemistry results correspond to the optical data. As a proof-of-concept, these results demonstrate that chemical treatments can be used to design the shapes and amounts of deposited catalytic metal on carbon by controlling the surface state.

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.