• Title/Summary/Keyword: Electrocatalytic oxidation

Search Result 80, Processing Time 0.021 seconds

A Kinetic Investigation of Ethanol Oxidation on a Nickel Oxyhydroxide Electrode

  • Danaee, I.;Jafarian, M.;Sharafi, M.;Gobal, F.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions where the methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. In CV studies, in the presence of ethanol, an increase in the current for the oxidation of nickel hydroxide is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of ethanol is being catalysed through mediated electron transfer across the nickel hydroxide layer comprising of nickel ions of various valence states. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of ethanol was found to be $1{\times}10^7cm^2s^{-1}$.

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites (Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가)

  • Lee, In-Ho;Kwen, Hai-Doo;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by $TiO_2$-hollow sphere prepared for use in sensor applications or fuel cells. The $TiO_2$-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the $Pt^{4+}$ and $Ru^{3+}$ ions onto $TiO_2$-hollow sphere ($Pt-Ru@TiO_2-H$). The prepared $Pt-Ru@TiO_2-H$ nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol, methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the $Pt-Ru@TiO_2-H$ nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto $TiO_2$-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

Electrocatalytic Properties of Metal-dispersed Carbon Paste Electrodes for Reagentless L-lactate Biosensors (금속이 첨가된 탄소전극의 전기화학적 특성과 이를 이용한 L-lactate 바이오센서의 개발)

  • 윤현철;김학성
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.489-496
    • /
    • 1996
  • Metal dispersed carbon paste electrodes were fabricated, and their electrochemical properties were investigated. Among various metal dispersed carbons, platinum-dispersed carbon paste electrode showed most efficient electrocatalytic characteristics. The overpotential for the oxidation of NADH was significantly lowered in the platinum-dispersed carbon paste electrode, and catalytic current was also enhanced. Based on these electrocatalytic observations, L-lactate biosensor using L-lactate dehydrogenase was constructed to evaluate its performance in terms of sensitivity and stability.

  • PDF

Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

  • Lee, Jihye;Jang, Ho Young;Jung, Insub;Yoon, Yeoheung;Jang, Hee-Jeong;Lee, Hyoyoung;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1973-1978
    • /
    • 2014
  • Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au@Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation (개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Choi, Jong-Ho;Lee, Kug-Seung;Jeon, Tae-Yeol;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide

  • Emir, Gamze;Karakaya, Serkan;Dilgin, Yusuf
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.

SAMs of 2-Aminoethanethiol Modified with 3,4-Dihydroxyphenylalanine for the Electrocatalytic Oxidation of NADH on Gold Electrodes

  • Cha, Seong-Keuck
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.786-790
    • /
    • 2004
  • 2-Aminoethanethiol (aet) has been used to make self-assembled monolayer (SAMs) on gold electrodes, which are subsequently modified with 3,4-dihydroxy phenylalanine (dpa). Such modified electrodes having various types of Au/aet-dpa were employed in the electrocatalytic oxidation of NADH. The purpose of this study to characterize the responses of such modified electrodes in terms of the immobilization procedure, pH of the solution and applied potential. The reaction of the surface immobilized dpa with NADH was studied using the rotating disk electrode technique and a value of $2.2{\times}10^4M^{-1}s^{-1}$ was obtained for the second-order rate constant in 0.1 M Tris/$NO_3^-$buffer (pH=8.0). The hydration behavior of the films was characterized by quartz crystal microbalance. When used as a NADH sensor, the Au/aet-dpa electrode exhibited good sensitivity and an excellent correlation (r ${\geq}$ 0.99) for NADH concentration which extended to $3.8{\times}10^{-3}$ M.

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C.;Meti, Manjunath D.;Nandibewoor, Sharanappa T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.292-300
    • /
    • 2018
  • The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.