• 제목/요약/키워드: Electrocatalytic

검색결과 219건 처리시간 0.024초

여러 가지 pH 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원 (The Electrocatalytic Reduction of Oxygen by Bis-Cobalt Phenylporphyrins in Various pH Solutions)

  • 최용국;조기형;박종기
    • 대한화학회지
    • /
    • 제37권8호
    • /
    • pp.735-743
    • /
    • 1993
  • Cofacial bis-cobalt tetraphenylporphyrin(Co-TPP) 유도체 화합물들이 수식된 유리질 탄소 전극과 carbon microelectrode을 작업 전극으로 사용하여 여러가지 pH 용액에서 순환 전압전류법 및 시간 전류법에 의해 산소의 환원반응을 조사하였다. 산성용액에서 monomer인 cobalt tetraphenylporphyrin 화합물이 수식된 전극에서 산소의 환원반응경로는 중간 생성물인 H$_2$O$_2$로 가는 2전자 반응으로, dimer인 cofacial bis-cobalt tetraphenylporphyrin 유도체 화합물들이 수식된 전극에서는 최종 생성물인 H$_2$O로 가는 4전자 반응으로 진행되었다. 이와 같은 산소의 환원반응은 전체적으로 비가역적이며 확산지배적인 반응으로 주어졌다. pH 변화에 따른 산소의 환원전위는 pH 13에서 pH 4 까지는 직선관계가 성립하였으나 강한 산성용액에서는 이들 관계가 성립하지 않았다. 산성용액에서 산소의 환원전위는 알몸 유리질 탄소전극에서 보다 monomer Co-TPP 화합물이 수식된 유리질 탄소전극에서는 400 mV만큼, dimer Co-TPP 화합물이 수식된 전극에서는 750 mV 만큼 더 양전위 방향으로 이동되었다.

  • PDF

알칼리 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원 (The Electrocatalytic Reduction of Dioxygen by Bis-Cobalt Phenylporphyrins in Alkaline Solution)

  • 최용국;문현주;전승원;조기형
    • 대한화학회지
    • /
    • 제37권4호
    • /
    • pp.462-469
    • /
    • 1993
  • Cofacial bis-cobalt tetraphenylporphyrin 유도체 화합물들이 수식된 유리질 탄소 전극과 microelectrode에서 순환 전압 전류법 및 시간 전류법에 의해 산소의 환원 반응을 조사하였다. Microelectrode를 사용하여 시간-전류법에 의해 얻은 전자수 n값들은 유리질 탄소 전극을 사용하여 순환 전압 전류법들에 의해 얻은 결과들과 다소 다른 값으로 나타났다. 알카리성 용액에서 monomer인 cobalt tetraphenylporphyrin 화합물이 수식된 전극에서 산소의 호나원 반응 경로는 중간 생성물인 $H_2O_2$로 가는 2 전자반응으로 진행되었고, dimer인 cofacial bis-cobalt tetraphenylporphyrin 유도체 화합물들이 수식된 전극에서는 최종 생성물인 $H_2O$로 가는 4 전자 반응으로 진행되었다. 이와 같은 산소의 환원 반응은 전체적으로 비가역적으로 확산 지배적인 반응으로 주어졌다.

  • PDF

Electrocatalytic properties of Te incorporated Ni(OH)2 microcrystals grown on Ni foam

  • Lee, Jung-Il;Oh, Seong Gyun;Kim, Yun Jeong;Park, Seong Ju;Sin, Gyoung Seon;Kim, Ji Hyeon;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2021
  • Developing effective and earth-abundant electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for the commercialization of a water splitting system. In particular, the overpotential of the OER is relatively higher than the HER, and thus, it is considered that one of the important methods to enhance the performance of the electrocatalyst is to reduce the overpotential of the OER. We report effects of incorporation of metalloid into Ni(OH)2 microcrystal on electrocatalytic activities. In this study, Te incorporated Ni(OH)2 (��Te-Ni(OH)2) were grown on three-dimensional porous NF by a facile solvothermal method with �� = 1, 3 and 5. Homogeneous microplate structure on the NF was clearly observed for the Ni(OH)2/NF and ��Te-Ni(OH)2/NF samples. However, irregular and collapsed nanostructures were found on the surface of nickel foam when Te precursor ratio is (��) over 3. Electrocatalytic OER properties were analysed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Te incorporation used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Te amount (��) introduced into the Ni(OH)2/NF was discussed with respect to their OER performance.

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Park, Soo-Jin;Park, Jeong-Min;Seo, Min-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.331-334
    • /
    • 2010
  • In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation)

  • 박인수;최종호;이국승;전태열;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell)

  • 박인수;이국승;최백범;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of carbon-supported near-surface alloys (NSAs) for electrode reaction of fuel cell)

  • 박인수;성영은
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.64-69
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of polymer electrolyte membrane fuel cells [PEMFCs] for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the supporting of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an alloying process occurred during the successive reducing process. The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one [Johnson-Matthey] for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Morphology Effect on Electrocatalytic Activity of TiO2 Spheres Synthesized by Binary Ionic Liquids in Water Electrolysis

  • Hong, Ki-Won;Pak, Dae-Won;Yoo, Kye-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1829-1833
    • /
    • 2012
  • Titania spheres were synthesized using binary ionic liquids to examine the electrocatalytic activity in acid solution. The morphology of $TiO_2$ particles was significantly different with the composition of ionic liquids. Among the binary ionic liquids, four set of mixtures led to the formation of $TiO_2$ sphere with various sizes. The morphology and structure of $TiO_2$ particles were characterized by XRD, $N_2$ physisoption and SEM analysis. All samples possessed an anatase phase after calcinations at $500^{\circ}C$. The structural properties of the samples were varied significantly with the morphology. In cyclic voltammograms, the morphology of $TiO_2$ spheres affected the electrocatalytic activity in water electrolysis. Among the samples, [Omim][$BF_4$]+[Hmim][$BF_4$] was the most effective ionic liquid to synthesize $TiO_2$ sphere with optimum morphology showing the highest electocatalytic performance.

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Vinoba, Mari;Jeong, Soon-Kwan;Bhagiyalakshmi, Margandan;Alagar, Muthukaruppan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3668-3674
    • /
    • 2010
  • Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.