• 제목/요약/키워드: Electrocardiogram(ECG)

Search Result 422, Processing Time 0.03 seconds

Estimation of Heart Rate Variability with an Android Smart Phone Platform (안드로이드 기반 스마트폰 연동 심박변이도 추정)

  • Kim, Jeong-Hwan;Shin, Seung-Won;Kim, Hyun-Tae;Yoon, Tae-Ho;Kim, Kyeong-Seop;Lee, Jeong-Whan;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.865-871
    • /
    • 2012
  • In this study, ambulatory electrocardiogram(ECG) signal and the rhythms of heart beats are visualized in terms of R-R intervals and Heart Rate Variability(HRV) in the environment of an android plaform. With this aim, Graphical User Interface(GUI) is implemented by executing multi-thread Java programming modules including ECG, heart-beats, tachogram and visualization unit. ECG signals are acquired in an android device by receiving the data from ambulatory ECG sensory system. Finite Impulse Response(FIR) filters are implemented to eliminate the baseline wandering noises contained in the ambulatory signals and DC-offset level in R-R interval data. With simulating the normal or stress emotional state of a subject, we can find the fact that HRV can be successfully estimated and visualized in an android smart phone platform.

Verification of Effectiveness of Wearing Compression Pants in Wearable Robot Based on Bio-signals (생체신호에 기반한 웨어러블 로봇 내 부분 압박 바지 착용 시 효과 검증)

  • Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.2
    • /
    • pp.305-316
    • /
    • 2021
  • In this study, the effect of wearing functional compression pants is verified using a lower-limb wearable robot through a bio-signal analysis and subjective fit evaluation. First, the compression area to be applied to the functional compression pants is derived using the quad method for nine men in their 20s. Subsequently, functional compression pants are prepared, and changes in Electroencephalogram (EEG) and Electrocardiogram (ECG) signals when wearing the functional compression and normal regular pants inside a wearable robot are measured. The EEG and ECG signals are measured with eyes closed and open. Results indicate that the Relative alpha (RA) and Relative gamma wave (RG) of the EEG signal differ significantly, resulting in increased stability and reduced anxiety and stress when wearing the functional compression pants. Furthermore, the ECG analysis results indicate statistically significant differences in the Low frequency (LF)/High frequency (HF) index, which reflect the overall balance of the autonomic nervous system and can be interpreted as feeling comfortable and balanced when wearing the functional compression pants. Moreover, subjective sense is discovered to be effective in assessing wear fit, ease of movement, skin friction, and wear comfort when wearing the functional compression pants.

A Novel Spiking Neural Network for ECG signal Classification

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.20-24
    • /
    • 2021
  • The electrocardiogram (ECG) is one of the most extensively employed signals used to diagnose and predict cardiovascular diseases (CVDs). In recent years, several deep learning (DL) models have been proposed to improve detection accuracy. Among these, deep neural networks (DNNs) are the most popular, wherein the features are extracted automatically. Despite the increment in classification accuracy, DL models require exorbitant computational resources and power. This causes the mapping of DNNs to be slow; in addition, the mapping is challenging for a wearable device. Embedded systems have constrained power and memory resources. Therefore full-precision DNNs are not easily deployable on devices. To make the neural network faster and more power-efficient, spiking neural networks (SNNs) have been introduced for fewer operations and less complex hardware resources. However, the conventional SNN has low accuracy and high computational cost. Therefore, this paper proposes a new binarized SNN which modifies the synaptic weights of SNN constraining it to be binary (+1 and -1). In the simulation results, this paper compares the DL models and SNNs and evaluates which model is optimal for ECG classification. Although there is a slight compromise in accuracy, the latter proves to be energy-efficient.

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.

A Study on the Correlationship between Wearable ECG and Clinical ECG Measurements (웨어러블 심전도 측정과 임상 심전도 측정과의 상관관계에 대한 연구)

  • Lee, Kang-Hwi;Lee, Seong-Su;Kim, Sang-Min;Lee, Hyeok-Jae;Min, Kyoung-Jin;Kang, Hyun-Kyu;Lee, Joo-Hyeon;Kwak, Hwy-Kuen;Ko, Yun-Soo;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1690-1698
    • /
    • 2018
  • Recent advances in ICT technology have transformed many of our daily lives and attracted a lot of attention to personal health. Heart beat measurement that reflects cardiac activities has been used in various fields such as exercise evaluation and psychological state evaluation for a long time, but its utilization method is limited due to its differentiation from clinical electrocardiogram. Therefore, in this study, we could observe the change of the measured signal according to the change of the distance and the position of the measuring electrodes which are non-standard electrode configuration. Based on the electric dipole model of the heart, correlation with clinical electrocardiogram could be confirmed by synthesizing multiple surface potentials measured with a shorter electrode distance than standard one. From the electromagnetic point of view, the distance between the measuring electrodes corresponds to the distance that the electric potential by the cardiac electric dipole moves, and the electric potential measured at the body surface is proportional to the moving distance of the electric potential. Therefore, it is preferable to make the distance between electrodes as long as possible, and to position the measuring electrode close to the ventricle rather than the atrium. In addition, it was found that standard electrocardiographic waveforms could be synthesized by using arithmetic sum of multiple measuring electrodes due to the relationship of electrical dipole vectors, which is obtained by dividing and positioning a plurality of measuring electrodes on a reference electrode line, such as Lead-I, Lead-II direction. Also, we obtained a significant Pearson correlation coefficient ($r=0.9113{\pm}0.0169$) as a result of synthetic experiments on four subjects.

Comparative Learning based Deep Learning Algorithm for Abnormal Beat Detection using Imaged Electrocardiogram Signal (비정상심박 검출을 위해 영상화된 심전도 신호를 이용한 비교학습 기반 딥러닝 알고리즘)

  • Bae, Jinkyung;Kwak, Minsoo;Noh, Kyeungkap;Lee, Dongkyu;Park, Daejin;Lee, Seungmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Electrocardiogram (ECG) signal's shape and characteristic varies through each individual, so it is difficult to classify with one neural network. It is difficult to classify the given data directly, but if corresponding normal beat is given, it is relatively easy and accurate to classify the beat by comparing two beats. In this study, we classify the ECG signal by generating the reference normal beat through the template cluster, and combining with the input ECG signal. It is possible to detect abnormal beats of various individual's records with one neural network by learning and classifying with the imaged ECG beats which are combined with corresponding reference normal beat. Especially, various neural networks, such as GoogLeNet, ResNet, and DarkNet, showed excellent performance when using the comparative learning. Also, we can confirmed that GoogLeNet has 99.72% sensitivity, which is the highest performance of the three neural networks.

Power line Interference cancelling in the ECG (ECG신호에서의 전력선 간섭 제거에 관한 연구)

  • Nam, H.D.;Ahn, D.J.;Lee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.308-310
    • /
    • 1992
  • Adaptive noise cancelling using system identification techniques for cancelling power line interference in the electrocardiogram (ECG) is presented. This method is sensitive and self-adjusting to both slow and abrupt changes in the AC interference amplitude and frequency. Computer simulation were done to compare this method with the Lekov's method.

  • PDF

Development of continuous blood pressure measurement system using ECG and PPG (ECG와 PPG를 이용한 실시간 연속 혈압 측정 시스템)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Nam, Ki-Chang
    • Science of Emotion and Sensibility
    • /
    • v.11 no.2
    • /
    • pp.235-244
    • /
    • 2008
  • This study is to develop automatic extraction system of continuous blood pressure using ECG (Electrocardiogram) and PPG(Photoplethysmography) for u-health care technology. PTT (Pulse Transit Time) was determined from peak difference between ECG and PPG and its inverse made to get blood pressure. Since the peaks were vulnerable to be contaminated from noise and variation of amplitude, this study developed the adaptive algorithm for peak calculation in any noise condition. The developed method of the adaptive peak calculation was proven to make the standard deviations of PPT decrease to 28% and the detection of noise increase to 18%. Also, the correlation model such as blood pressure = -0.044 $\cdot$ PTT + 133.592 has successfully been determined for predicting the continuous pressure measured without using cuff but with using PPG and ECG, only.

  • PDF

2D ECG Compression Using Optimal Sorting Scheme (정렬과 평균 정규화를 이용한 2D ECG 신호 압축 방법)

  • Lee, Kyu-Bong;Joo, Young-Bok;Han, Chan-Ho;Huh, Kyung-Moo;Park, Kil-Houm
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • In this paper, we propose an effective compression method for electrocardiogram (ECG) signals. 1-D ECG signals are reconstructed to 2-D ECG data by period and complexity sorting schemes with image compression techniques to increase inter and intra-beat correlation. The proposed method added block division and mean-period normalization techniques on top of conventional 2-D data ECG compression methods. JPEG 2000 is chosen for compression of 2-D ECG data. Standard MIT-BIH arrhythmia database is used for evaluation and experiment. The results show that the proposed method outperforms compared to the most recent literature especially in case of high compression rate.