• Title/Summary/Keyword: Electroactive Polymer

Search Result 66, Processing Time 0.023 seconds

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • Moghadam, Amir Ali Amiri;Kouzani, Abbas;Zamani, Reza;Magniez, Kevin;Kaynak, Akif
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1601-1623
    • /
    • 2015
  • Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montrnorillonite (Sodium Montrnorillonite로 개질한 아크릴계 IPMC의 물성과 전기 구동 특성)

  • Jeong, Han-Mo;Kim, Byung-Chon;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.380-384
    • /
    • 2005
  • Fluoroalkyl methacrylate and acrylic acid were bulk radical copolymerized in the presence of pure sodium montmorillonite or macromer intercalated sodium montmorilonite to get a fluorinated acrylic ionomer/sodium montmorillonite composite, and their physical properties, such as X-ray diffraction pattern, tensile properties, and water uptake, were examined. These composites were used to preparean ionic acrylic polymer-platinum composite (IPMC). The current and deformation responses of these IPMCs by external voltage applied across the platinum electrodes deposited on both sides of IPMC showed that the cation migration from anode to cathode was suppressed in the presence of sodium montmorillonite, causing reduced current and deformation.

The Effect of Single Wall Carbon Nanotubes on the Dipole Orientation and Piezoelectric Properties of Polymeric Nanocomposites

  • Kang, Jin-Ho;Park, Cheol;Gaik Steven J.;Lowther Sharon E.;Harrison Joycelyn S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.245-245
    • /
    • 2006
  • Recent studies of single wall carbon nanotube (SWNT)/polyimide nanocomposites indicate that these materials have a potential to provide the combination of structural integrity and sensing/actuation capability. This study shows the effect of the SWNT type and concentration on the dipole orientation and piezoelectric properties of the electroactive polymide nanocomposites using a thermally stimulated current (TSC) spectroscopy. These nanocomposites exhibit very thermally stable piezoelectric properties up to $150^{\circ}C$. This presentation will highlight the dipole orientation and electroactive characteristics of the SWNT/polyimide nanocomposites and discuss their potential multifunctional aerospace applications.

  • PDF

Supramolecular Nanodevice Based on Helical Encapsulation of Photo-/Electroactive Oligomers

  • Kim, Oh-Kil
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.167-167
    • /
    • 2006
  • Photo-/electroactive donor-acceptor (D-A) chromophores were synthesized and investigated for energy- and electron-transfer (ET/eT) properties, for which the chromophores are supramolecularly integrated by encapsulation with helical amylose, rendering the chromophores aggregation-free and rigidified along the helical axis and thus, a remarkably enhanced fluorescence intensity. Fluorescence quenching studies indicated that the helical encapsulation gives the ET/eT a clear D-A distance dependence unlike with the encapsulation-free counterparts, being reflected in their florescence decay profile. Another notable difference is that the helical supramolecule of the chromophores forms a perpendicularly oriented self-assembly. Transport behavior in the solid state will be also discussed.

  • PDF

Design, modelling and analysis of a new type of IPMC motor

  • Kolota, Jakub
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.223-231
    • /
    • 2019
  • The properties of Electroactive Polymer (EAP) materials are attracting the attention of engineers and scientists from many different disciplines. From the point-of-view of robotics, Ionic Polymer Metal Composites (IPMC) belong to the most developed group of the EAP class. To allow effective design of IPMC-actuated mechanisms with large induced strains, it is necessary to have adequate analytical tools for predicting the behavior of IPMC actuators as well as simulating their response as part of prototyping methodologies. This paper presents a novel IPMC motor construction. To simulate the bending behavior that is the dominant phenomenon of motor movement process, a nonlinear model is used. To accomplish the motor design, the IPMC model was identified via a series of experiments. In the proposed model, the curvature output and current transient fields accurately track the measured responses, which is verified by measurements. In this research, a three-dimensional Finite Element Method (FEM) model of the IPMC motor, composed of IPMC actuators, simultaneously determines the mechanical and electrical characteristics of the device and achieves reliable analysis results. The principle of the proposed drive and the output signals are illustrated in this paper. The proposed modelling approach can be used to design a variety of controllers and motors for effective micro-robotic applications, where soft and complex motion are required.

A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness (유연 복합재료 전극 제조 및 표면조도에 따른 접착 특성에 대한 연구)

  • Lee, Han-Young;Jung, Kyung-Chae;Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.242-247
    • /
    • 2014
  • The fabrication of flexible electrodes coated on the surface of a dielectric elastomer film, which is a type of electroactive polymer (EAP), was carried out. Controlled amounts of Xylitol powder were added (10, 30, 50 and 70 wt%) to the commercial conductive polymer (PEDOT:PSS) to enhance resilience of the electrode. To check resilience of the fabricated composite electrodes, tensile tests were carried out using silicone films coated with the polymer electrodes. From the test results, it was found that 70 wt% Xylitol containing conductive polymer had excellent elongation and high failure strains. Furthermore, surface of the silicone film was uniformly polished with various abrading papers to enhance the wettability of the conductive polymers on the surface of the silicone film. It was found that the silicone film polished with #120 abrading paper had the best wettability and guaranteed excellent bonding behavior.

Fabrication of an Electrostrictive Fluorinated Terpolymer Sheet Applicable to Artificial Muscle Systems (인공 근육에 응용 가능한 전기변형 불화 고분자 박막의 제작)

  • Kim, Sung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.276-279
    • /
    • 2011
  • Polymer electrostrictor materials can exhibit high electroactive strain and hold increasing promise for a variety of actuator applications. The size of available actuators has been limited, however, by the solution-based casting and annealing process generally required to prepare electrostrictor actuator materials. We report on a high throughput melt and stretch extrusion process capable of creating large sheets of an electrostructive terpolymer, poly (vinylidene fluoride-trifluoroethylene-1, 1-chlorofluoroethlene) while producing a suitable crystallinity and crystal phase for high strain electrostrictor performance such as artificial muscle systems.

Synthesis of Electroactive Polythiophene Derivatives and Its Application for Biointerface (I) (전기적 활성을 갖는 폴리티오펜 유도체들의 합성과 생체계면에의 응용 (I))

  • 정선형;배진영;김지흥;정동준
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.28-36
    • /
    • 2002
  • In this study, we synthesized novel thiophene derivatives by the protection of the carboxyl group of 3-thiophene acetic acid with differently substituted benzyl groups. While 3-thiophene acetic acid is not electro-polymerizable, the modified monomers can be easily electro-oxidized to form stable electroactive polymers. The protecting groups can be easily removed in the solid state and the desired reactive carboxyl group can be introduced on the polymer surface. SEM observations show that obtained polymer films show a very good film surface and homogeneous morphology on the Pt electrode. After introduction of macromonomer, FT-IR spectrum shows new absorption bands at 1650 and $1550 cm^{-1}$, which is consistent with the formation of an amide bond. Electroactivity measurements were examined by cyclic voltammogram(CV). These polymers showed the characteristic electrochemical behavior of poly(3-alkylthiophene)s with reversible redox transition in the range of 0.7-0.9 V.

Development of Modeling and control Methods for Multi-DOF dielectric polymer actuator

  • Jung, M.Y.;Jung, K.M.;Koo, J.C.;Choi, H.R.;Nam, J.D.;Lee, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1225-1228
    • /
    • 2004
  • Principles and mechanism of energy transduction of dielectric polymer materials are well known from the various smart material related publications. However their introduction to industrial actuator applications is limited mainly due to difficulties guarantee controllability and reliability. Most of the previous publications have elaborates energy transduction physics of chunk of polymer while development of construction methods for feasible actuators made of the material is rarely proposed. In the present article, a conceptual design of multi-DOF linear polymer actuator construction that is to be controllable with moderate level of control work os introduced. In addition, numerical models that are developed with a unified energy based approach are presented not only for basic working mechanism analysis of the polymetric soft actuator but for providing analytical foundation to expend the concept toward design of multi-DOF actuator controls.

  • PDF