DOI QR코드

DOI QR Code

Fabrication of an Electrostrictive Fluorinated Terpolymer Sheet Applicable to Artificial Muscle Systems

인공 근육에 응용 가능한 전기변형 불화 고분자 박막의 제작

  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • Received : 2011.04.19
  • Accepted : 2011.06.10
  • Published : 2011.07.30

Abstract

Polymer electrostrictor materials can exhibit high electroactive strain and hold increasing promise for a variety of actuator applications. The size of available actuators has been limited, however, by the solution-based casting and annealing process generally required to prepare electrostrictor actuator materials. We report on a high throughput melt and stretch extrusion process capable of creating large sheets of an electrostructive terpolymer, poly (vinylidene fluoride-trifluoroethylene-1, 1-chlorofluoroethlene) while producing a suitable crystallinity and crystal phase for high strain electrostrictor performance such as artificial muscle systems.

약밀려남/잡아당김/급냉각의 연속적인 압출 공정을 이용하여 대면적 불화 고분자 막을 제작하였다. 제안한 방법으로 형성된 불화 고분자 박막은 $C_i=2.9\;nF/cm^2$의 전기용량밀도가 측정되었고, 1kHz에서의 ${\varepsilon}_r$=56의 높은 유전상수를 나타내었다. $1.5406{\AA}$의 파장에서 Bruker AXS X-ray 회절분석기를 통해 $18.0^{\circ}$에서 최고점을 나타내어 전기변형 성능에 적합한 ${\beta}$ 상태를 확인하였다. 본 연구는 넓은 면적의 인공근육에 응용 가능한 전기변형 불화고분자막의 새로운 박막 형성 기술로 이용될 수 있다.

Keywords

References

  1. F. Bauer, E. Fousson, Q. M. Zhang, and L. M. Lee, IEEE Trans. Dielectr. Electr. Insul. 11, 293 (2004). https://doi.org/10.1109/TDEI.2004.1285900
  2. Q. M. Zhang, V. Bharti, and X. Zhao, Science 280, 2101 (1998). https://doi.org/10.1126/science.280.5372.2101
  3. R. Shankar, T. K. Ghosh, and R. J. Spontak, Adv. Mater. 19, 2218 (2007). https://doi.org/10.1002/adma.200602644
  4. A. O'Halloran, F. O'Malley, and P. McHugh, J. Appl. Phys. 104, 071101 (2008). https://doi.org/10.1063/1.2981642
  5. D. Kim, K. J. Kim, Y. Tak, D. Pugal, and I. -S. Park, Appl. Phys. Lett. 90, 184104 (2007). https://doi.org/10.1063/1.2735931
  6. K. Ren, Y. Liu, H. Hofmann, Q. M. Zhang, and J. Blottman, Appl. Phys. Lett. 91, 132910 (2007). https://doi.org/10.1063/1.2793172
  7. S. H. Park, J. Korean Vacuum Soc. 17, 448 (2008). https://doi.org/10.5757/JKVS.2008.17.5.448
  8. S. H. Park, J. Korean Vacuum Soc. 18, 221 (2009). https://doi.org/10.5757/JKVS.2009.18.3.221
  9. G. S. Buckley, C. M. Roland, R. Casalini, A. Petchsuk, and T. C. Chung, Chem. Mater. 14, 2590 (2002). https://doi.org/10.1021/cm0116471
  10. H. Xu, Z. -Y. Cheng, D. Olson, T. Mai, Q. M. Zhang, and G. Kavarnos, Appl. Phys. Lett. 78, 184104 (2007).
  11. Q. Chen, B. Chu, X. Zhou, and Q. M. Zhang, Appl. Phys. Lett. 91, 062907 (2007). https://doi.org/10.1063/1.2768205
  12. S. Zhang, B. Neese, K. Ren, B. Chu, and Q. M. Zhang, J. Appl. Phys. 100, 044113 (2006). https://doi.org/10.1063/1.2335778
  13. R. J. Klein, J. Runt, and Q. M. Zhang, Macromolecules 36, 7220 (2003). https://doi.org/10.1021/ma034745b
  14. J. L. Wang, X. J. Meng, S. Z. Yuan, J. Yang, J. L. Sun, H. S. Xu, and J. H. Chu, Appl. Phys. Lett. 93, 192905 (2008). https://doi.org/10.1063/1.3026535