• 제목/요약/키워드: Electro-static

Search Result 191, Processing Time 0.022 seconds

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF

Development of the Organic Solar Cell Technology using Printed Electronics (인쇄전자 기술을 이용한 유기 태양전지 기술 개발)

  • Kim, Jungsu;Yu, Jongsu;Yoon, Sungman;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

Proposition and Evaluation of Parallelism-Independent Scheduling Algorithms for DAGs of Tasks with Non-Uniform Execution Time

  • Kirilka Nikolova;Atusi Maeda;Sowa, Masa-Hiro
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.289-293
    • /
    • 2000
  • We propose two new algorithms for parallelism-independent scheduling. The machine code generated from the compiler using these algorithms in its scheduling phase is parallelism-independent code, executable in minimum time regardless of the number of the processors in the parallel computer. Our new algorithms have the following phases: finding the minimum number of processors on which the program can be executed in minimal time, scheduling by an heuristic algorithm for this predefined number of processors, and serialization of the parallel schedule according to the earliest start time of the tasks. At run time tasks are taken from the serialized schedule and assigned to the processor which allows the earliest start time of the task. The order of the tasks decided at compile time is not changed at run time regardless of the number of the available processors which means there is no out-of-order issue and execution. The scheduling is done predominantly at compile time and dynamic scheduling is minimized and diminished to allocation of the tasks to the processors. We evaluate the proposed algorithms by comparing them in terms of schedule length to the CP/MISF algorithm. For performance evaluation we use both randomly generated DAGs (directed acyclic graphs) and DACs representing real applications. From practical point of view, the algorithms we propose can be successfully used for scheduling programs for in-order superscalar processors and shared memory multiprocessor systems. Superscalar processors with any number of functional units can execute the parallelism-independent code in minimum time without necessity for dynamic scheduling and out-of-order issue hardware. This means that the use of our algorithms will lead to reducing the complexity of the hardware of the processors and the run-time overhead related to the dynamic scheduling.

  • PDF

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Dynamic Characteristic Analysis of 3-Level Half-bridge SSSC (3-레벨 반브리지로 구성된 SSSC의 동특성 분석)

  • 박상호;하요철;백승택;김희중;한병문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.317-324
    • /
    • 2001
  • This paper proposes a SSSC based on 3-level half-bridge inverters. The dynamic characteristic of the proposed SSSC was analyzed by EMTP simulation and a scaled hardware model, assuming that the SSSC is inserted in the transmission line of the one-machine-infinite-but power system. The proposed SSC has six 3-level half-bridge inverters per phase, which operates in PWM mode. The proposed SSSC generates a quasi-sinusoidal output voltage by 90 degree phase shift to the line current. The proposed SSSC does not require the coupling transformer for voltage injection, and has a flexibility in operation voltage by increasing the number of series connection.

  • PDF

Quality Assessment of Domestic Non-automatic Weighing Instruments for International Standards (국제표준에 대비한 국내 비자동저울의 품질평가에 관한 연구)

  • Namkoong Chai-Kwan;Kong Jae Hyang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.127-134
    • /
    • 2004
  • As the result of reduction of the barrier of national economy on matters of quality assurance of weighing instruments in recently, it is considering in domestic as well as international matters. Therefore, this study is to analysis and compare with international md national measuring standards on the electric self-indicating scale, to improve the quality of electronic machine by providing a reformation plan on currently problems of domestic manufactured, and to identify to introduce in domestic criteria from international standards. I had compared KSC 1313 to OIML R 76-1 as the performance assessment items, such as metrology Properties test, static temperature test, temperature effect testing under the un-load, electronic wave disturbance test, high-tempereature and high-humidity stability test and durability test. Therefore, only one company is passed all items of the test according to the international (reference) standards, but it is possible to improve the quality in general if it should be use the load cell and electric components which is stability of temperature change in order to supplementation to the static temperature test and temperature effect testing under the un-load. It is also possible to apply in the domestic with the OIML 76-1 after correcting the design.

Light-intensity Dependence of Diffraction Efficiency in - $Fe:LiNbO_3$ Crystals - (빔세기에 따른 $Fe:LiNbO_3$ 결정의 회절효율)

  • 정태혁
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.323-329
    • /
    • 1993
  • In this paper, dependence of the diffraction efficiency upon incident light intensity is studied. The conductivity ratio, which is dependent upon the incident light intensity, changes the static electric field in a crystal. This change of the static electric field modulates the refractive index via linear electro-optic effect. And the change of the refractive index affects the diffraction efficiency. It is found that experimental results with $Fe:LiNbO_3$ crystals are in good agreement with the theory.

  • PDF

Control System Design and Performance Analysis for Transmission Static Compensator (송전용 무효전력보상기의 제어시스템 설계와 성능해석)

  • 한병문;최대길
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • This paper describes a control system design for the transmission STATCOM by applying a no-linear state feedback, and the performance analysis of the control system by simulations and scaled-model experiments. A mathematical model for the STATCOM was derived using a 3-phase equivalent circuit and a perturbation state equation with respect to a typical operating point. A transfer function to describe the dynamics of STATCOM was derived by considering nonlinear state feedback. A controller design was completed by analyzing the feedback system stability with root locus method. The performance analysis of the conceived control system was verified by simulations with the EMTP and experiments with scaled model, assuming that the STATCOM is connected to an 154kV transmission system. The results show that the conceived control system has excellent performance to control the reactive power of the transmission system.