Proceedings of ITC-CSCC 2000, Pusan, Korea

Proposition and Evaluation of Parallelism-Independent Scheduling
Algorithms for DAGs of Tasks with Non-Uniform Execution Time

Kirilka Nikolova, Atusi Maeda and Masahiro Sowa
University of Electro-Communications, Graduate School of Information Systems,
Laboratory for Parallel and Distributed Processing
Japan, Tokyo 182-8585, Chofu-shi, Chofugaoka 1-5-1
Tel: (+81) 424-43-5635, Fax: (+81) 424-43-5851
E-mail: {nikol, maeda, sowa}@sowa.is.uec.ac.jp

Abstract: We propose two new algorithms for
parallelism-independent scheduling. The machine code
generated from the compiler using these algorithms in its
scheduling phase is parallelism-independent code,
executable in minimum time regardless of the number of
the processors in the parallel computer. Our new
algorithms have the following phases: finding the
minimum number of processors on which the program can
be executed in minimal time, scheduling by an heuristic
algorithm for this predefined number of processors, and
serialization of the paraliel schedule according to the
earliest start time of the tasks. At run time tasks are taken
from the serialized schedule and assigned to the processor
which allows the earliest start time of the task. The order of
the tasks decided at compile time is not changed at run
time regardless of the number of the available processors
which means there is no out-of-order issue and execution.
The scheduling is done predominantly at compile time and
dynamic scheduling is minimized and diminished to
allocation of the tasks to the processors. We evaluate the
proposed algorithms by comparing them in terms of
schedule length to the CP/MISF algorithm. For
performance evaluation we use both randomly generated
DAGs (directed acyclic graphs) and DAGs representing
real applications. From practical point of view, the
algorithms we propose can be successfully used for
scheduling programs for in-order superscalar processors
and shared memory multiprocessor systems. Superscalar
processors with any number of functional units can execute
the parallelism-independent code in minimum time without
necessity for dynamic scheduling and out-of-order issue
hardware. This means that the use of our algorithms will
lead to reducing the complexity of the hardware of the
processors and the run-time overhead related to the
dynamic scheduling.

Keywords: Parallelism-Independent Scheduling, Static/
Dynamic Scheduling, Multiprocessor Scheduling, Directed
Acyclic Graph (DAG), Degree of Parallelism (DOP),
Multiple Instruction Issue, In-Order/Out-of-Order
Execution.

1. Introduction

In [1] and [2] we proposed a new scheduling method called
Parallelism-Independent Scheduling Method (PIS),
enabling the execution of the scheduled program on
parallel computers with any degree of parallelism in time
comparable to the minimal one. The motivation for the
proposition of parallelism-independent algorithms is the
following problem of the conventional static scheduling
algorithms. They order the instructions/tasks, of the

program in such a way, that the program can be executed in
minimum time only for one fixed number of processors. As
a result, the generated by the compiler machine code is
with a fixed degree of paralielism. The program can be
executed efficiently only when the degree of parallelism of
the machine code matches the degree of parallelism of the
parallel computer. If the processor number in the parallel
computer is changed, the program has to be rescheduled
with another assumption about the degree of the
parallelism, and a new machine code has to be assigned for
execution, in order to achieve minimal execution time on
the new number of processors. However, all the
commercial applications are distributed as a machine code
and the number of the processors of the executing parallel
computer is known only after the distribution of the
application. This means that the machine code has to be
scheduled after the distribution when the number of the
processors of the parallel computer is known. But it is very
difficult to schedule the machine code, because some of the
data dependencies in it may be missing. Therefore we need
a new scheduling method which is applied on the source
code and which eliminates the need for generation of new
code for each degree of parallelism of the parallel computer
the program is run on. We have introduced this kind of
method in [1] and [2]. Our method implies fulfilling greater
part of the scheduling job at compile time and only
allocating the tasks to the processors at dynamic time. We
would like to underline the advantage of our algorithm: the
order of the tasks determined at compile time is not
changed at dynamic time with the change of the number of
the processors.

In contrast to the traditional static scheduling
methods, the code generated by the compiler using our
scheduling method is parallelism-independent code
executable on any number of processors in near minimal
time. In contrast to the dynamic scheduling method that
can be applied for any number of processors, our method
does not need out-of-order issue and execution of the
instructions. The dynamic scheduling implies additional
hardware necessary to look far ahead in the dynamic
instruction stream, find independent instructions and
schedule them out of order. However the detection and
scheduling of the instructions dynamically increases the
complexity of the hardware, lengthens the cycle time of the
machine and reduces the actual speedup over the scalar
processor. The advantage of our algorithms is that there is
no need for such complex hardware and dynamic change of
the order of the instructions.

In our previous research we have proposed
parallelism-independent scheduling algorithms for DAGs
of tasks with uniform execution time. In the present new
study, we relax the restrictions, imposed on the DAGs in

our past research, and extend our method to make it
applicable for DAGs of instructions/ tasks with non-
uniform execution times. This makes our method more
practical and applicable both for superscalar processors
and multiprocessors with shared memory.

In this paper we propose two new algorithms for
Parallelism-Independent Scheduling: Critical Path
Parallelism-Independent Scheduling Algorithm (CPPIS)
and Latest Finish Time Parallelism-Independent
Scheduling Algorithm (LFTPIS). We compare them
between each other and to the CP/MISF (Critical Path
Most Immediate Successors First) Algorithm [3], which is
applied for each degree of parallelism. CP/MISF has been
chosen for the comparison because it is proven that it gives
optimal results in 87% of the random cases. The
comparison is done in terms of execution time of the
scheduled program and the computational time of the
scheduling algorithm (the time they spent for scheduling).
The performance evaluation is carried out using random
DAGs and DAGs representing real applications like the
computation of the Fast Fourier Transformation and the
solution of a system of linear equations.

The remainder of our paper is organized as follows.
In Section 2 we give information about some existing
scheduling methods and algorithms, which are directly
related to our research. There we discuss the problems they
imply and how we suggest to solve these problems. We
describe in detail the new algorithms we propose in
Section 3. In Section 4 we present the simulations carried
out for performance evaluation of the algorithms, and
comment the results obtained from these simulations. We
draw the conclusions in the last section.

2. Traditional Scheduling vs. Parallelism-
Independent Scheduling

The utilization of the big potential of the multiprocessor
systems depends considerably on the efficient instruction
scheduling and for that reason there are many researches in
this area. The parallel program can be represented by a
DAG in which the nodes denote the tasks of the program
and the edges show the precedence relationships between
the tasks. Below we describe briefly the different
approaches for solving the scheduling problem the purpose
of which is ordering the tasks of the program for achieving
minimal execution time, minimum wused ‘resources or
efficient load balancing.

2.1 Static Scheduling

The most common technique for DAG static scheduling is
the list scheduling: assigning priorities to the nodes of the
DAG and allocating the nodes for execution to the
available processors in order of their priorities. The quality
of the algorithms depends on the accuracy with which the
priorities of the nodes are defined. Adam, Chandy and
Dickson suggest that using the /eve! of the task (the longest
path from the node to the exit node) as a priority yields the
nearest solution to optimal. Many tasks scheduling
schemes use the CP/MISF algorithm [3] because the
Critical Path (CP — the longest path in the graph)

determines the shortest possible execution time of the
program. Its steps are defining the level of the tasks,
sorting the tasks in decreasing order of their levels and
number of their immediate successors and assigning the
ready tasks (tasks whose predecessors are already
executed) to the idle processors. But all the traditional
static algorithms generate code with a fixed degree of
parallelism because they use information about the number
of the processors when they order the tasks of the program
(i.e. there is one task order allowing the minimum
execution time of the program on 2 processors and another
task order allowing the minimum execution of the program
on 3 processors). As a result, the generated code will be
executed in minimum time only on a parallel computer
with number of processors equal to the degree of
parallelism of the generated code.

2.2 Dynamic Scheduling

This approach can be used for scheduling not depending on
the degree of parallelism of the parallel computer, however
it consumes time and resources which lead to overhead
during the program execution. The basic idea of the
dynamic scheduling is to perform task ordering and
allocation at run-time. For example, many multiple-issue
processors employ out-of-order execution hardware in the
processor pipeline. Such scheduling hardware can result in
good performance without relying on compile time
scheduling. However the shortcomings of the out-of-order
execution is that there is a necessity for hardware for our-
of-order issue and it can lead to the increase of the
processor cycle time.

2.3. Parallelism-Independent Scheduling

The use of our parallelism-independent scheduling
algorithms makes possible by only one order of the tasks at
compile time to achieve good execution times for any
number of processors without the need for dynamic
scheduling hardware and great time overhead for run-time
scheduling.

In [1] we propose 3 Parallelism-Independent
Scheduling Algorithms developed under the assumption
that the tasks of the parallel program are with equal
execution times. The scheduling framework for these
algorithms is as follows:

1. Assigning priorities to the nodes of the DAG using some
heuristics priority as levels or co-levels of the nodes.

2.Forming of blocks of simultaneously executable tasks
taking the data dependencies between the tasks and their
priorities.

3.Rearrangement of the tasks within the borders of the
block so that they can be executed with different degrees
of parallelism

4. Serialization of the schedule by connecting all the blocks

5. Adding of markers for the parallel execution limits.

The non-uniformity of the execution time of the
tasks makes the solution of the parallelism-independent
problem much more difficult because we need to devise a
function for ordering of the tasks different from their levels
or co-levels. We describe how we solve this problem in the
next section.

3. The Proposed Algorithms

The problem we face is how to order the program’s tasks
with different execution times so that we can guarantee the
execution of the program in this fixed order on any number
of processors in time comparable to the minimal one. It is
obvious that we cannot simply use the levels of the tasks
for parallelism-independent ordering (ordering the tasks by
their levels yielding minimum time can be done only for a
fixed number of processors). The co-levels of the tasks (the
longest path from a node to input node) can be used for
such ordering because they denote the earliest possible
time (EST) for execution of the tasks. If we order the tasks
in increasing order of their EST, then there is greater
possibility for a greater sequence of independent tasks in
the serialized schedule and efficient execution on any
number of processors. However, if we use only EST as a
priority, then the execution time of the scheduled program
exceeds the results of the CP/MISF algorithm up to 20%
proved by experimental results. That is why we try to order
the tasks by a combined function, their levels and EST
(CPPIS), or their latest finish time and EST (LFTPIS).

The common idea unifying our algorithms is that
first a parallel schedule is formed for a fixed number of
processors p using the levels or the latest finish time of the
tasks as priority. This fixed number of processors p is the
minimum number of processors allowing the execution of
the program with a time equal to the CP in the DAG. Then
this parallel schedule is serialized ordering the tasks
according to their EST in the parallel schedule for p
processors. In this way we limit the degree of parallelism
to p and try to order the tasks so that the program can be
executed in time near to the minimal one for number of
processors less than p (2 € Processor Number < p). The
common steps of our algorithms are:

At static-time:

1. Finding the number of processors p

2. Forming a parallel schedule by ordering the tasks by a
priority different for the two proposed algorithms (the
levels of the tasks or the latest finish time of the tasks)
for p processors.

3. Serialization of the schedule according to the tasks
earliest start time, as they appear in the parallel schedule
for p processors. In this way the tasks are ordered
according to two priorities, either their level or LFT and
their EST for p processors.

At run-time:

Tasks are taken from the serialized schedule and assigned
for execution to the available processor on which they can
start execution at the earliest possible time. If a task from
that serial order cannot start execution because it is not
ready, then it waits until it becomes mature. In the
meantime no other task can start execution before it.

3.1 Critical Path Parallelism-Independent Scheduling
Algorithm

The steps of CPPIS Algorithm are as follows:

1. Finding p, the minimal number of processors needed for
execution of the program with time equal to the length of

the critical path CP of the DAG. ‘
Now we will explain how we find this processor number p.
At the beginning we estimate P as follows:

P=(2. \T.)/CP,or

P= Maximal Execution Time of /the DAGCP,

where T; is the execution time of task i, and the Maximal
Execution Time of the DAG is its execution time on |
processor sequentially. Then we schedule the DAG using
the CP/MISF algorithm for number of processors equal to
P. If the execution time of the program is greater than P,
then we increase the number of the used processors to P+1,
until the execution time of the program becomes equal to
CP. The procedure is given below:

Repeat
Schedule for P processors by CP/MISF
If the Schedule Length > CPLength
P=P+]
Until Schedule Length = CPLength

2. Scheduling the graph by CP/MISF Algorithm for DOP p
3. Forming a serialized schedule according to the EST of
the tasks as they appear in the schedule for DOP p

Steps 2 and 3 of CPPIS Algorithm for the example
DAG of Fig. 1 are presented in Fig. 2. The scheduling
results for different DOPs are shown in Fig. 3

Execution Time (ET)

Earliest Start Time (EST)

0 Latest Finish Time (LFT) | Task| ET [EST| LFT |Level

=
o

- e b de
w

=
Ba e et = 1o
=

[P
= -
=

Hi6

predecessor of T,)= 1 N}

lour

Fig. 1 An Example DAG with calculated levels, LFT
and EST

3.2 Latest Finish Time Parallelism-Independent
Scheduling Algorithm

The steps of the LFTPIS algorithm are:

1. Finding p, the minimum degree of parallelism for which
the program is executed with time equal to the length of the
CP.

2. Scheduling for DOP p, using for priorities the LFT of the
tasks. For that purpose the tasks are ordered in increasing
order of their LFT and assigned to the p processors in this

—~ 201 —

Level - max path from T, 10 the exit node

LEE(T)=CPL - max {Levelof task T,

Note. The Critical Path Nodes are with da
ol

order, taking in account the precedence constraints
between the tasks. Tasks with smallest LFT have greater
priority. The LFT shows at what time a task shall finish
execution so that the total execution time of the program
does not exceed the CP in the DAG.

3. Serialization of the schedule according to the EST of the
tasks in the schedule for DOP p.

Steps 2 and 3 of LFTPIS Algorithm for the example DAG
of Fig. 1 are presented in Fig. 4. The scheduling results for
different DOPs are shown in Fig. 5. By comparison of the
results of the CPPIS and LFTPIS Algorithms for the
example graph we use, we can see that for DOP=2 LFTPIS
gives better results than CPPIS algorithm.

Scheduling for p=4 using CP/MISF Serialized Schedule

according to the EST

Efficient Execution
on 2, 3, 4 processors

for p=4
PEOCE2PF PR
Task EST
#1 0
#2 0
#3 0
44 0
#7 2 DOP 4
48 2 i:
> 2;,5 ; DOP 3
#5 5 \
#12 s
. 2 DOP 2
#16 8
#10 10
H11 10
H13 12
414 14

Fig. 2 The steps of CPPIS Algorithm

PEI BI2 PETPE2 PIE3

PEIPE2 PEX P14

EYRINEY

Fig. 3 Scheduling Results for CPPIS on 2, 3 and 4
processors
4. Performance Evaluation

4.1 With Random DAGs
We use random DAGs with different characteristics as

number of edges/nodes and different degrees of parallelism
in the graphs:
® 20 graphs 250 nodes/1000 edges, p=8
® 20 graphs 500 nodes/2000 edges, p=12
® 20 graphs 1000 nodes/4000 edges, p=16
We have taken the average value for the Execution
Time Ratio (ETR):
ETR = Exec. Time of CPPIS (LFTPIS)/Exec. Time of CP/MISF
ETR represents the maximum deviation of the results
of CPPIS and LFTPIS Algorithms from those of the
CP/MISF Algorithm, when applied separately for each
DOP. The results for the maximum average ETR are
presented in Table 1. The average ETR for the 20 graphs
with 500 nodes/2000 edges and p=12 is presented in Fig. 6.
LFTPIS and CPPIS perform very similarly, with slightly
better performance of LFTPIS for number of processors
less than p and better performance of CPPIS performs for
number of processors greater than p.

Schedule for p=4 using LFT Algorithm Serialized Schedule

according to the EST

PE PE2 PIY PLA for p=4
lask ESI
#1 0
0 0
#3 0
#4 o
#7 2
H]
#15 4
#3 3
#o 3
#12 3
#Y &
#16 8
#10 10
#it 10
Hi3 12
14 "

Fig. 4 The steps of LFTPIS Algorithm

PEN PE2 PELPE2 PF3 PIEY PE2 PE3 P14

Fig. 5 Scheduling Results for LFTPIS on 2, 3 and 4
processors

— 292 —

Execution Time Ratio

If we compare the computation times of CPPIS and
LFTPIS Algorithms, we can see that the computational
time of LFTPIS Algorithm exceeds that of CPMISF. (Fig.
7). In this figure the time of CP/MISF algorithm is taken
for all possible degrees of parallelism, that is the reason it
is longer than that of LFTPIS and CPPIS.

Average resuits for 20 graphs with 500 nodes/2000 edges,
p=12

1.06

—A— CPPIS
weanipnen | FTPIS

1.05

1.04

1.03

1.02

1.01

2 3 45 6 7 8 9 10 1112 13 14 15 16 17 18 19 20
Number of Processors

Fig. 6 Average ETR for 20 graphs with 500 nodes/2000
edges, p=12

£ CP/MISF OFind Priorities of the
.'A:E Tasks
_§: ESchedule until p is found
<
LFTPIS
E | & Schedule for p
3
% W Serialization of the
“ GPPRIS I schedule

0 100 200 300 400
Computation Time, ms

Fig. 7 Comparison of the Execution Time of the

Parallelism-Independent Algorithms vs. CP/MISF
Algorithm
Table 1 .
Graph Type CPPIS LFTPIS

Max Average ETR | Max Average ETR
250n./1000 e. 6.2% 6.3%
500n./2000 e. 5.76% 5.49%
1000n./4000 e. 5.15% 4.93%

4.2 With DAGs of Real Applications

We used the DAGs .of the programs for computation of the
Fast Fourier Transformation (FFT) and linear systems of
equations. The results for the FFT are presented in Fig. 8.
The best results are obtained using the CPPIS Algorithm.
The results of the CPPIS Algorithm do not exceed those of
the CP/MISF Algorithm more than 8.5% at DOP=14. As a
whole, the deviation from the results of the CP/MISF
Algorithm is less than 5% in 85% of the DOPs. The
LFTPIS Algorithm gives maximum deviation from the

results of the CP/MISF Algorithm also 8.5% for DOP=14,
however its results are worse for the other DOPs. It gives
results less than 5% exceeding the results of the CP/MISF

Algorithm in 70% of the DOPs. We obtain similar results

32 point FFT

DCPPIS | i yroe
_ ELFTPIS -

Number of Processors

Fig. 8 ETR for the CPPIS and LFTPIS Algorithm

in the case of using the DAG of the program for solution of
system linear equations. Then the maximum deviation of
LFTPIS and CPPIS from the results of CP/MISF is 8.88%.

5. Conclusions

We propose and evaluate two parallelism-independent
algorithms producing code executable in time comparable
to the minimal one regardless of the number of the
processors in the parallel computer. According to the
simulation we have carried out, the maximum deviation of
the results of CPPIS and LFTPIS Algorithms from the
results of the CP/MISF Algorithm is between 5% and 7%
on the average, and not exceeding 10% in the separate
random cases we have studied. Based on the results, we
can conclude that these algorithms (especially CPPIS) can
be used successfully for parallelism-independent
scheduling for real applications. We have tested them not
only with random graphs but with graphs derivatives of
real programs as the computation of the Fast Fourier
Transformation and Solution of Systems of Linear
Equations and the experiments proved the efficiency of
these algorithms.

References

[1] Kirilka Nikolova, Atusi Maeda and Masahiro Sowa, Parallelism
Independent Scheduling Method”, 1EICE Trans. on Fundamentals, June
2000.

[2] Kirilka Nikolova, Atusi Maeda, and Masahiro Sowa, “Parallel-Free
Scheduling Method”, Proceedings of the International Technical
Conference on Circuits and Systems, Computers and Communications,
Vol. 2, pp. 1132-1135, IEICE 1999.

[3] H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling
Algorithms, for Efficient Parallel Processing”, IEEE Transactions on
Computers, C-33 (Nov. 1984), pp. 1023-1029.

— 293 -

ETR

