• 제목/요약/키워드: Electro-osmotic drag

검색결과 10건 처리시간 0.024초

일정 전류에서 연료전지의 비정상 특성 (Transient Characteristics of Fuel Cell Stack at Continuous Current Discharge)

  • 박창권;정귀성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.195-206
    • /
    • 2003
  • Polymer electrolyte membrane fuel cells(PEMFC) are very interesting power source due to high power density, simple construction and operation at low temperature. But they have problems such as high cost, improvement of performance and effect of temperature. This problems can be approached using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management, in this paper, transient model consists of various energy terms associated with fuel cell operation using the mass and energy balance equation. And water transfer in the membrane is composed of back diffusion and electro-osmotic drag. The temperature calculated by transient model approximately agreed with the temperature measured by experiment in constant current condition.

고분자전해질 연료전지에서 고분자 막의 이온 전도도 (Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell)

  • 황병찬;정회범;이무석;이동훈;박권필
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.593-597
    • /
    • 2016
  • 고분자전해질 연료전지에서 전해질막의 이온전도도에 미치는 상대습도, 전류밀도, 온도의 영향에 대해 연구하였다. 전해질막의 물의 함량과 물의 이동은 이온전도도에 많은 영향을 미친다. 전기삼투와 역확산만으로 물 이동을 모사하고 해석하였다. 이온전도도는 셀 밖에서 측정 장비로 막 상태에서 그리고 막전극합체로 구동상에서 측정되었다. 상대습도 증가에 따라 막 내 물 함량이 증가하였고 물 함량 증가에 따라 이온전도도도 상승하였다. 전류밀도 증가에 따라 전기삼투와 역확산에 의한 물의 양이 증가해 물 함량이 선형적으로 증가하였고 그 결과 전류밀도 증가에 따라 이온전도도가 선형적으로 상승하였다. 온도가 $50^{\circ}C$에서 $80^{\circ}C$C로 증가함에 따라 이온전도도는 약 40% 증가하였다.

채널 내장형 습도 센서를 이용한 고분자 전해질 연료전지의 습도분포 측정 (Measurement of Humidity Distribution in a Proton Exchange Membrane Fuel Cell Using Channel Embedded Humidity Sensors)

  • 이용택;양경열
    • 대한기계학회논문집B
    • /
    • 제39권5호
    • /
    • pp.397-403
    • /
    • 2015
  • 본 연구는 고분자 전해질 연료전지 (PEMFC)의 성능에 매우 중요한 영향을 미치는 물의 분포를 실험적으로 측정하였다. 내부에서 일어나는 활발한 화학반응과 물질전달 특성 때문에 PEMFC 내부에서 수분의 분포가 불균일하며 그 분포를 실험적으로 측정하기가 용이하지 않아 그 동안 간접적인 측정이 많이 이루어졌다. 본 연구에서는 초소형 온습도 센서를 연료전지의 채널에 직접 삽입하고 채널을 따라 흐르는 반응가스의 습도를 측정하였다. 수소극과 공기극 중 한곳만 가습하며, 가습하지 않은 곳에서 습도를 측정하여 멤브레인을 통한 물의 이동을 연구하였다. 가습기의 온도가 증가할수록 양극의 물농도 구배가 커져서 확산이 증가하나 높은 전류밀도에서는 전기삼투항력의 영향이 더욱 커졌다.

직접메탄올 연료전지의 메탄올 크로스오버에 대한 시뮬레이션 및 검증 (Simulation and Validation of Methanol Crossover in DMFCs)

  • 고요한;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.126.1-126.1
    • /
    • 2010
  • In direct methanol fuel cells(DMFCs), it is well known that methanol crossover severely reduces the cell performance and the cell efficiency. There are a number of design and operating parameters that influence the methanol crossover. This indicates that a DMFC demands a high degree of optimization. For the successful design and operation of a DMFC system, a better understanding of methanol crossover phenomena is essential. The main objective of this study is to examine methanol-crossover phenomena in DMFCs. In this study, 1D DMFC model previously developed by Ko et al. is used. The simulation results were compared with methanol-crossover data that were measured by Eccarius et al. The numerical predictions agree well with the methanol crossover data and the model successfully captures key experimental trends.

  • PDF

전산해석을 통한 고분자 전해질 연료전지 내 입구 가습조건의 영향에 관한 연구 (Numerical Study for the Effect of Inlet Humidity Condition at PEMFC Channel)

  • 이동율;;배중면
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1228-1235
    • /
    • 2006
  • PEMFC(Proton Exchange Membrane Fuel Cell) is a low temperature fuel cell and has many probabilities of commercial use. However, water management is one of the serious technical problems for commercialization. It is necessary to understand the relationship between operation conditions and water behavior in PEMFC channel because it affects fuel cell performance. In this paper, the distribution of current density according to inlet humidity condition is mainly observed and discussed. If the anode inlet is well humidified, electro-osmotic drag is very active. For this reason, current density is very high at inlet side and the distribution is non-uniform.

전기화학식 수소 압축기 직렬 스택 기술 (Series Stacking Techniques of Electrochemical Hydrogen Compressors)

  • 조상훈;김창종;김민수;김동규
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.168-174
    • /
    • 2024
  • The electrochemical hydrogen compressor was run under diverse operating conditions in order to probe its capabilities and limitations. It was found that, unlike single-cell operations, the electrochemical hydrogen compressor stack performance improved with a rise in temperature. This improvement in performance was attributed to the gradual weakening of the electro-osmotic drag over time, impacting membrane resistance. As a result of these experiments, compression levels, up to an impressive 120 bar, using the electrochemical hydrogen serial stack were achieved.

고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측 (Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell)

  • 양장식;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

고분자 전해질 연료전지의 수소극 공급모드에 따른 성능특성 (Performance Characteristics of a Polymer Electrolyte Fuel Cell with the Anodic Supply Mode)

  • 이용택;박차식;허재혁;김용찬
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.588-595
    • /
    • 2007
  • The water transport inside a polymer electrolyte fuel cell (PEFC) varied according to the anodic supply mode. The performance characteristics of a PEFC which can be affected by the water transport were observed with the anodic supply mode. In the flow-through and recirculation mode the performance showed no reduction with time because the flow in the anode was not stagnated. In the dead-end mode, without any discharged gas, the water remains inside of the anode, which caused the reduction of the performance with the lapse of time. However, even in the dead-end mode, little reduction of the performance with time was shown when only the anode was humidified externally. It means that the back-diffusion was the major factor to the accumulation of water in the anode rather than external humidification.

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

PEM연료전지의 수분전달에 있어서 1차원 해석을 수행한 동적모델에 관한 연구 (Analysis on a Dynamic Model with One Dimension in Water Transportation of PEM Fuel Cell)

  • 아궁박티르;홍부표;유진광;김영복;윤정인;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.118-123
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell performance. Maintenance of proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.