• 제목/요약/키워드: Electro-mechanical analysis

검색결과 438건 처리시간 0.025초

자기 차폐를 이용한 전방향 자기차륜 (Omni-Directional Magnet Wheel using Magnetic Shield)

  • 심기본;이상헌;정광석
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.72-80
    • /
    • 2009
  • When the magnet wheel rotates over a conducting plate, it generates the traction torque as well as the repulsive force on the conducting plate. Partially-cut traction torque results in the linear force into the tangential direction. To cut the traction torque, the concept of magnetic shield is introduced. The direction change of the linear force is realized varying the shielded area of magnetic field. That is, the tangential direction of non-shielded open area becomes the direction of the linear thrust force. Specially a shape of permanent magnets composing the magnet wheel leads to various pattern of magnetic forces. So, to enlarge the resulting force density and compensate its servo property a few simulations are performed under various conditions such as repeated pattern, pole number, radial width of permanent magnets, including shape of open area. The theoretical model of the magnet wheel is derived using air-gap field analysis of linear induction motor, compared with test result and the sensitivity analysis for its parameter change is performed using common tool; MAXWELL. Using two-axial wheel set-up, the tracking motion is tested for a copper plate with its normal motion constrained and its result is given. In conclusion, it is estimated that the magnet wheel using partial shield can be applied to a noncontact conveyance of the conducting plate.

전기-유압 유사성을 활용한 단방향 섬유 강화 복합재료의 수직 방향 투수 계수 예측 알고리즘 (Prediction Algorithm for Transverse Permeability of Unidirectional Fiber Reinforced Composites with Electric-Hydraulic Analogy)

  • 배상윤;조현성;김성수
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.334-339
    • /
    • 2022
  • 본 연구에서는 복합재료 제조 공정 과정 중 수지의 유동 저항성을 대변하는 인자인 투수 계수를 예측하는 알고리즘을 개발하였다. 단방향 연속 섬유 복합재료 내부에서 섬유와 수직인 방향 투수 계수의 정확한 예측을 위해 대표 체적 요소의 단면 형상을 고려하였다. 섬유의 유체 유동 저항성을 정량화하기 위한 인지로 섬유 간 간격이 사용되었고, 등가 길이는 섬유 배열에 따른 수지의 유로 변화를 나타내는 인자로 사용되었다. 전기-유압 유사성을 접목하여 투수 계수 예측 알고리즘을 개발하고 그 타당성을 확인하였다. 알고리즘은 Matlab과 Python으로 구성되고, 타당성 검증을 위해 FLUENT를 통해 예측된 투수 계수와 비교하였다. 알고리즘과 수치 해석을 통해 얻은 투수 계수가 거의 일치함을 확인하여 알고리즘을 검증하였으며, 소요 시간은 수치 해석 대비 약 1/450로 감소하였다.

API X70강 배관 모재부의 수소 손상에 관한 연구 (A Study on Hydrogen Damage in Base Metal of API X70)

  • 이호준;유종민;다오반헝;배재현;김우식;윤기봉
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.284-292
    • /
    • 2020
  • In this study, hydrogen charging was conducted for API X70 steel by the electro-chemical hydrogen charging method. Right after hydrogen was diffused from the specimen surface to the inside of the X70, the small punch tests and hydrogen concentration analysis was conducted within 5 minutes. Hydrogen was analyzed by melting the whole specimen and detect the gas after melting. Mechanical properties were measured by the small punch (SP) testing. Fracture surface and specimen surface were observed using scanning electron microscope. Three tests were repeated for study sensitivity of the SP test results under a same charging condition. It was observed that the variation of the maximum load, SP displacement at failure, hydrogen concentration as the charging period was not much in the case of X70 as the other steel such as Inconel. It can be argued that X70 base metal may have high hydrogen damage resistance and hydrogen diffusion in the base metal would not cause much embrittlement. Limitations of the SP test with 0.5 mm thickness for hydrogen damage test for X70 were discussed.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Smart sensors for monitoring crack growth under fatigue loading conditions

  • Giurgiutiu, Victor;Xu, Buli;Chao, Yuh;Liu, Shu;Gaddam, Rishi
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.101-113
    • /
    • 2006
  • Structural health monitoring results obtained with the electro-mechanical (E/M) impedance techniqueand Lamb wave transmission methods during fatigue crack propagation of an Arcan specimen instrumented with piezoelectric wafer active sensors (PWAS) are presented. The specimen was subjected in mixed-mode fatigue loading and a crack was propagated in stages. At each stage, an image of the crack and the location of the crack tip were recorded and the PWAS readings were taken. Hence, the crack-growth in the specimen could be correlated with the PWAS readings. The E/M impedance signature was recorded in the 100 - 500 kHz frequency range. The Lamb-wave transmission method used the pitch-catch approach with a 3-count sine tone burst of 474 kHz transmitted and received between various PWAS pairs. Fatigue loading was applied to initiate and propagate the crack damage of controlled magnitude. As damage progressed, the E/M impedance signatures and the waveforms received by receivers were recorded at predetermined intervals and compared. Data analysis indicated that both the E/M impedance signatures and the Lamb-wave transmission signatures are modified by the crack progression. Damage index values were observed to increase as the crack damage increases. These experiments demonstrated that the use of PWAS in conjunction with the E/M impedance and the Lamb-wave transmission is a potentially powerful tool for crack damage detection and monitoring in structural elements.

신재생 에너지 적용을 위한 고효율 영구자석 동기 전동/발전기의 해석 및 설계 (Analysis and Design of high-efficiency Permanent Magnet Synchronous Motor/Generator for Renewable Energy Application)

  • 유대준;김일중
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.955-964
    • /
    • 2011
  • In renewable energy system such as flywheel energy storage system, wind power and solar power, the motor/generator is the important key for offering the electric energy to the electric loads. For example, the heavy and large flywheel is rotated by electromagnetic torque of pemanent magnet synchronous motor (PMSM) and, in case of a breakdown of electric current, the PMSM used as generator supplies electric energy for the various electric utilities using mechanical rotation energy of the flywheel. Thus, design of a motor/generator should be performed in effort to reduce cogging torque and electromagnetic loss for high efficiency. In our paper, a slotless permanent magnet synchronous motor/generator (SPMSM/G) with output power 15kW at the rotor speed 18000rpm is designed from electromagnetic analysis and dynamic performance analysis. In analytical approach, design parameters such as back electro-motive force (back EMF), inductance and electromagnetic torque are derived from analytical method which is one of the electromagnetic analysis method. And using the design parameters, this paper deal with system design considering the driving characteristics and electric load in required power. Finally, the analytical results are verified by the experiment and finite element method (FEM).

선체구조용 EH36 TMCP 후판의 FCAW 및 EGW 조합 용접부 기계적 성질에 미치는 개선조건의 영향 (Effect of Groove Conditions on the Mechanical Properties of Welds Produced by the Combined Welding Process of Flux Cored Arc and Electro Gas in EH36 TMCP Steel Plate for Hull Structures)

  • 김기혁;김기원;심호섭;배강호;홍현욱;박병규
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.35-40
    • /
    • 2015
  • Characterization of microstructures and mechanical properties of 83mm thickness EH36-TM welds produced by the combined flux cored arc (FCA) and electro gas (EG) welding processes has been studied with the two different groove conditions, single-V (SV) and double-V (DV) bevels. The welding consumables used for FCA and EG welding processes were ASME/AWS A5.29 (E81T1-K2) and A5.26 (EG72T), respectively. Experimental results showed that all the mechanical properties of welds such as tensile property, CVN toughness and Vickers hardness met IACS requirements. The tensile strength of EG welded plates were reduced by approximately 4% (DV: 3.8%, SV: 4.2%) compared to the base metal. The hardness value of SV-beveled weld metal was slightly lower than that of DV-beveled one. There were no significant differences as per welding groove conditions except for the weld metal. In addition, at the fusion line, the toughness of SV condition was 20J lower and the weld metal was 40J lower than DV condition, respectively. On the basis of microstructural analysis, grain boundary ferrite (GBF) structures for SV condition were 2 times higher volume fraction than for DV condition and their packet sizes were coarsened to almost double. It was thus suggested that the GBF volume fractions and packet sizes in the weld metal of EH36-TM steel plates are the most important factors affecting the mechanical properties of the combined FCA and EG welded joint. Nevertheless, all the results of welds with both DV and SV conditions were found to be excellent.

질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서 (Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure)

  • 호 일;김현호;최상진;반재경
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.78-86
    • /
    • 2014
  • 본 논문에서는 질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서를 제안하고 시뮬레이션과 부분 실험을 통하여 그 실현 가능성을 제시한다. 제안한 광세기 기반 광섬유 진동센서는 네 개의 구불구불하게 휘어지는 스프링과 질량체 안의 사각형 개구면(aperture)으로 구성된 질량-스프링 구조를 가진다. 광시준기(optical collimator)는 질량체 안의 사각형 개구면의 변위에 의해서 변조되는 광을 넓히는 데 이용된다. 제안한 광섬유 진동센서를 광학적인 면과 기계적인 면에서 해석하고 설계한다. 기계적인 부분의 설계는 이론적인 해석, 수학적인 모델링 및 3 차원 유한요소법 시뮬레이션을 이용한다. 기계적인 진동이 가해질 때 개구면의 상대적인 변위관계를 3차원 유한요소법 시뮬레이션을 이용하여 구하고, 개구면의 상대적인 변위에 따른 출력값을 실험을 통하여 측정한다. 이를 이용하여 진동에 따른 출력 특성을 파악한 결과 센서 민감도 $15.731{\mu}W/G$, 감지영역 ${\pm}6.087G$를 얻었다. 그리고 입력광원의 파워가 10 dB까지 변하더라도 참조광을 이용하여 0.75%의 상대오차를 보이는 매우 안정된 출력광 파워를 얻었다. 제안한 광섬유 진동센서는 간단한 구조, 저비용 및 다지점 측정 가능의 특징을 가지면서, MEMS (Micro-Electro-Mechanical System) 기술을 이용하여 소형으로 간편하게 제작할 수 있는 잠재력을 가진다.

비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가 (Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads)

  • 김태영;김태안;한승호
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.567-573
    • /
    • 2017
  • 자동차 부품 중 드라이브 샤프트는 엔진에서 발생하는 토크를 바퀴에 전달하는 동력 전달장치의 핵심 부품이다. 엔진에서 입력되는 비틀림 하중과 주행 중 발생하는 실동하중에 의한 부품의 파손을 방지하기 위해, 고주파 열처리로 강도 및 피로수명이 개선되고 있다. 본 연구에서는 고주파 열처리에 따른 드라이브 샤프트의 피로수명을 정량적으로 평가할 수 있는 피로수명 평가기법을 구축하였다. 드라이브 샤프트의 소재인 SAE10B38M2 강재로 모재 및 경화깊이가 서로 다른 고주파 열처리 시편 두 종을 제작하여 비틀림 하중 하에서의 전단 변형률 제어 피로시험을 진행하였고, 변형률-수명 피로수명 평가에 필요한 피로 물성값을 구하였다. 얻어진 피로 물성값을 이용하여 드라이브 샤프트의 변형률 기반 피로해석을 진행하였으며, 얻어진 피로수명 결과를 시제품 피로시험 결과와 비교하여 해석기법의 타당성을 검증하였다.

충돌해석에서의 점용접부 모델링에 따른 하중특성 평가 (Evaluation of the Finite Element Modeling of Spot-Welded Region for Crash Analysis)

  • 송정한;허훈;김홍기;박성호
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.174-183
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The role of this rigid beam is simply to transfer the load across the welded components. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. The load calculated from the precise finite element model of the spot-welded region considering the residual stress due to the thermal history during the spot welding procedure is regarded as the reference value and the value of the load is compared with the one obtained from the spot-welded model using the rigid beam with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.