• Title/Summary/Keyword: Electro-mechanical Properties

Search Result 348, Processing Time 0.027 seconds

Performance Investigation of a Brake System Featuring Electro-Rheological Fluids (전기유동유체를 이용한 브레이크 시스템의 성능 고찰)

  • Kim, G.W.;Park, W.C.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.123-130
    • /
    • 1995
  • This study presents model synthesis and performance investigation of a new brake system using electro-rheological(ER) fluids. Field-dependent Bingham properties characterized by non-zero yield stresses of the ER fluids are experimentally distilled. These properties are then incorporated with the governing equation of the proposed brake system which features design simplicity, fast response and salient controllability. After analyzing system performance with respect to design parameters such as electrode gap and length, an appropriate size of the brake is designed and fabricated. Both simulation and experimental works are undertaken in order to determine the feasibility and efficiency of the proposed brake system. The system performances are justified by evaluating field-dependent braking torques as well as braking times.

  • PDF

A gain scheduling method for the vibration suppression servo controller of articulated robots

  • Lee, Sang-Hun;Yim, Jong-Guk;Hur, Jong-Sung;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2725-2730
    • /
    • 2003
  • In this study we present a vibration controller for articulated robots that has flexible joints modeled as a 2-mass system. Most of articulated robots have time varying load inertias for each axis according to its motion. Moreover, the inertias vary drastically; for the base axis of articulated robots it may vary about 10 times of its minimum value. But, for industrial robots and many mechatronic devices, it is desirable to maintain control performance in spite of load inertia variation. So we propose a control gain adjustment rule considering the time-varying nature of load inertia. In this gain-adjusting algorithm, the pole locations are in proportion to the anti-resonance frequency of the 2-mass system. The simulation and experimental results show uniform properties in overshoot in spite of the variation of load.

  • PDF

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M.;Aghaie-Khafri, M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1411-1437
    • /
    • 2015
  • The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

Piezoelectric characteristics of PZ-PT-PMS ceramics according to calcination temperature of PMS (PMS 하소온도애 따른 PZ-PT-PMS 계 세라믹 압전특성)

  • Lee, D.J.;Jeong, S.H.;Kim, H.H.;Park, S.K.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1510-1512
    • /
    • 1997
  • Piezoelectric characteristics of lead zirconate(PZ)-lead titanate(PT)-lead manganese antimony(PMS) ceramics with the various changes of calcination temperature in PMS were prepared. The range of their sintering temperature was from $1100^{\circ}C$ to $1250^{\circ}C$. The electro-mechanical properties of PZ-PT-PMS ceramics such as piezoelectric constant, electro-mechanical coupling coefficient, and mechanical quality factor are measured as a function of the calcination temperature of PMS. As increasing the calcination temperature of PMS mechanical quality factor is increased.

  • PDF

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation

  • Mohammadimehr, Mehdi;Arshid, Ehsan;Alhosseini, Seyed Mohammad Amin Rasti;Amir, Saeed;Arani, Mohammad Reza Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.683-702
    • /
    • 2019
  • The present study aims to analyze the magneto-electro-elastic (MEE) vibration of a functionally graded carbon nanotubes reinforced composites (FG-CNTRC) cylindrical shell. Electro-magnetic loads are applied to the structure and it is located on an elastic foundation which is simulated by visco-Pasternak type. The properties of the nano-composite shell are assumed to be varied by temperature changes. The third-order shear deformation shells theory is used to describe the displacement components and Hamilton's principle is employed to derive the motion differential equations. To obtain the results, Navier's method is used as an analytical solution for simply supported boundary condition and the effect of different parameters such as temperature variations, orientation angle, volume fraction of CNTs, different types of elastic foundation and other prominent parameters on the natural frequencies of the structure are considered and discussed in details. Design more functional structures subjected to multi-physical fields is of applications of this study results.

Effect of Solvent Mixture on the Properties of LTCC Slurry and Green Sheets (LTCC 슬러리 및 그린시트의 물성 변화에 미치는 혼합용매 조성의 영향)

  • Cho, Beom-Joon;Park, Eun-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.533-537
    • /
    • 2006
  • The effects of binary solvent mixtures with various ratios of toluene and ethanol on the properties of slurries and green sheets were investigated. Viscosity of slurry was changed by varying the ratio of solvent mixture which affected the solubility of binder. The relative solvency behavior of a solvent mixture could be predicted with the Hildebrand solubility parameter(${\delta}$) and hydrogen bonding index( ${\gamma}$). The minimum viscosity, the best dispersion of binder, was reached at the composition of toluene:ethanol=4:6, which corresponded to our forecast. The mechanical properties of green sheets related to evaporation of solvents were influenced by the composition of the solvent mixture. At the azeotrope the skin was formed on a drying cast during the drying process because of fast evaporation. At a range of concentrations over 50wt% toluene, green sheets could not be fully dried at low temperature due to excessive toluene. The mechanical properties of green sheets were excellent at the azeotrope-like composition of toluene:ethanol=4:6 which has a little excess of toluene over the azeotrope.

Nondestructive Sensing Evaluation of Thermal Treated Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement (전기저항 측정 방법을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화된 에폭시 복합재료의 비파괴적 감지능 평가)

  • Jung Jin-Kyu;Park Joung-Man;Kim Dae-Sik;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.15-18
    • /
    • 2004
  • Nondestructive damage sensing and mechanical properties for thermal treated carbon nanotube(CNT) and nanofiber(CNF)/epoxy composites were investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison. Electro-micromechanical techniques were applied to obtain the fiber damage and stress transferring effect of carbon nanocomposites with their contents. Thermal treatment and temperature affected on apparent modulus and electrical properties on nanocomposites due to enhanced inherent properties of each CNMs. Coefficient of variation (COV) of volumetric electrical resistance can be used to obtain the dispersion degree indirectly for various CNMs. Dispersion and surface modification are very important parameters to obtain improved mechanical and electrical properties of CNMs for multifunctional applications. Further optimized functionalization and dispersion conditions will be investigated for the following work continuously.

  • PDF

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.