• Title/Summary/Keyword: Electro-hydraulic servo system

Search Result 95, Processing Time 0.025 seconds

Identification and Control of a Electro-Hydraulic Servo System Using a Direct Drive Valve (압력제어용 DDV를 이용한 전기.유압 서보시스템의 식별 및 제어)

  • 이창돈;이상훈;곽동훈;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • The electro-hydraulic servo system with a servo valve is applied widely in force control. However, the composition of control system using a servo valve is difficult due to nonlinearities in the servo valve, such as square-root terms in flow equation. The electro-hydraulic servo system using a DDV(Direct Drive Valve) instead of a servo valve was proposed and it's characteristics was estimated. The DDV and whole system are modelled by parameter identification using the input-and-output data, then the models are verified by the comparison of simulation with experiment. Also, the state feedback controller has been designed based on this model, then the performance of the electro-hydraulic force servo system using a DDV is evaluated by simulation and experimental results.

A Study on PWM Control of an Electro-Hydraulic Servo Indexing System (전기유압식 서보인덱싱 시스템의 PWM 제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 1999
  • This study deals with the application of high speed on-off valves to an electro-hydraulic servo indexing system incorporated electro-hydraulic servo valces. Comparing with the electro-hydraulic servo valve the high speed on-off valve has some merits. Which included low price robustness to the oil contamination and dircect control without D/A converter. The considered sys-tem of this study is controlled by pulse width modulation(PWM) of the control law which is pro-duced by a PID controller which is used broadly in industrial equipments. The dynamic character-istics corresponding to variations of system parameters such as inertia moment system gain and supply pressure are investigated by computer simulation and experiment. Consequently the availability of the application of high speed on-off valve to servo indexing system instead of electro-hydraulic servo valve is confirmed.

  • PDF

A Study on the Parameters Estimation of Electro-Hydraulic Servo Systems Using RMSM (RLSM 방법을 이용한 전기 유압 서보 시스템의 파라미터 추정에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1510-1514
    • /
    • 2011
  • In this paper, linear discrete model of the electro-hydraulic servo system are made for parameters estimation. The parameters of electro-hydraulic servo system are estimated using the recursive least square method. Persistent excitation conditions are studied in order to estimate parameters of electro-hydraulic servo system to real values and parameters estimation affections are studied due to the forgetting factors variation. As the results, An parameter estimation method has been synthesized for minimizing the error between reference and error.

A Study on the Control of Electro-Hydraulic Motors Using Ahead Predictive Adaptive Control Method (예측 적응제어 기법을 이용한 전기 유압 모터의 제어에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1360-1365
    • /
    • 2011
  • Electro-hydraulic servo motor is used to a lot of in the field of industrial equipment which requires one of the control functions among pressure, flow, and power output. In this paper, linear discrete reference model of the electro-hydraulic servo motor system are made for 1-step ahead predictive control. The parameters of electro-hydraulic servo motor system are estimated using the recursive least square method. 1-step ahead predictive model output of electro-hydraulic servo motor system corresponded to reference model output in spite of estimated parameters are not meet real parameters. Control performance affections are studied due to the forgetting factors variation.

The Experimental Parameter Identification of Electro-Hydraulic Servo Control System (유압 서어보 제어 시스템의 설계 변수 결정의 실험적 고찰)

  • 김영대;강석종;이관섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.957-961
    • /
    • 1991
  • The parameters of electro-hydraulic servo system are closely dependent on the variation of system characteristics. Especially the parameter sensitivity is incleased in the servo system with heavy load and wide operating range. This paper shows the effect of parameter variation and the experimental parameter values of high power servo system.

  • PDF

Modeling and PID Control of an Electro-Hydraulic Servo System (전기유압 서보시스템의 모델링과 PID 제어)

  • Lee, Se Jin;Kim, Cheol Jae;Kang, Yong Ju;Choi, Soon Woo;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • The electro-hydraulic training device (TP511) provided by Festo Didactic are widely used, but teaching materials do not include mathematical modeling. Thus, there is a limit for full-scale learning about the electro-hydraulic servo system by using this equipment. In this study, for the purpose of improving students' understanding of the classical control and modern control Festo's electro-hydraulic servo training device (TP511) was mathematically modeled and parameter values were calculated by examining the characteristics of each component. And P, PI, PD, and PID controllers highly used in the industrial field, were designed by using the root locus method to achieve the optimal gains and used for simulation and experiments using the Festo's electro-hydraulic servo training apparatus. The validity of the derived mathematical model and the calculated parameter values were verified through simulation and experiment. It was found that the p control can achieve the control target more effectively than the pid control for Festo's electro-hydraulic servo training system by using the root locus method.

Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System (신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.

Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm (전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별)

  • 곽동훈;이춘태;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm (개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

Designing the high performance electro-hydraulic position controller using 3-port servo valve for heavy and unidirectional load system (대부하 편하중 유압시스템의 3-port 서어보 밸브를 사용한 고속제어기 설계 연구)

  • 김영대;이관섭;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.276-281
    • /
    • 1989
  • Comparison 3-port servo system with 4-port is made to obtain optimal design for heavy and unidirectional hydraulic system, It is concluded that 3-port servo system it more adequate than 4-port for the heavy load system which is usually operated at lower frequencies. High performance electro-hydraulic position controller is designed using 3-port servo valve. It includes dynamic pressure feedback as a inner loop and position feedback as a outer loop.

  • PDF