• 제목/요약/키워드: Electro-hydraulic servo

검색결과 105건 처리시간 0.026초

고속전자밸브를 사용한 유압장치의 주파수응답특성에 관한 연구 (A Study on the Frequency response charcteristics of Hydraulic Equipment using High speed on-off valve)

  • 허준영
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.79-86
    • /
    • 1995
  • Frequency response method is used to design hydraulic servo systems and improve its performance. In this study a method is proposed to get simply the frequency response of the electro-hydraulic servo system which use PWM controlled high-speed on-off valves. Firstly, the describing function of the PWM element is derived and tested. It is found that the character- istic of PWM element could be approximated to a saturation characteristic in the range of allowable frequency. And the dynamic characteristic of the valve-cylinder system could be negligible. The working characteristic of high-speed on-off valve is considered as time delay. So simulation is performed in the basis of the reconstructed block diagram. And this method is verified by experiments.

  • PDF

적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어 (Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

성능추정 프로그램을 이용한 대부하 선회구동/제어 시스템 단순화 연구 (A Study on the Simplified Controller for the Heavy-Load Traverse Driving System Using Performance Estimation Program)

  • 최근국;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.261-267
    • /
    • 2000
  • In this study, a heavy-load servo-control driving system, which are composed of controller, electro-hydraulic servomechanism, hydraulic motor, reduction gearbox, turret slew bearing and turret structure, are investigated to simplify the servo-control system. To estimate the effect of each component, nonlinear modeling and simulation are carried out. In the first stage, to prove the validity of the performance estimation program, simulation results are compared with experimental results. In the second stage, the effect of each component of the control system is evaluated and then a simplified control system is suggested.

  • PDF

3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교 (Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI))

  • 정명철;성기수;김상명;이진욱
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

고속전자밸브를 사용한 유압장치의 PWM 제어에 관한 연구 (A Study on the PWM Control of Hydraulic Equipment Using High Speed On-Off Valve)

  • 허준영
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.868-876
    • /
    • 1995
  • This study deals with a position control of an electro-hydraulic servo system which consist of cylinder and high speed on-off valves operated by microcomputer. The merits of PWM control of hydraulic equipment are the robustness of the high spee on-off valve, its low price and the direct control without D/A converter. In the PWM control of high speed on-off valve, the time lag and switching time existing between the input and output signals of valve are considered as demerit points. To get analytical results, the effects of these demerits have to be clarified in detail. The object of this study is to propose a mathematical model for the behavior of high speed on-off valve and to get analytical results of this system. The dynamic characteristics of this system is examined by digital computer simulation analytically and compared with experimental results to varify the proposed mathematical model.

가변구조제어기를 이용한 다중실린더 위치동조 제어 (Motion Synchronization of Control for Multi Electro-Hydraulic Actuators)

  • 김성훈;서정욱;윤영원;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.

전기 유압 시스템의 비선형 주파수 응답 해석에 관한 연구 (A Study on Analysis of Non linear Frequency Response of Electro-Hydraulic Systems)

  • 이용주;전봉근;송창섭
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.246-252
    • /
    • 1999
  • In this paper, the frequency response characteristics of the velocity controlled EHS system obtained by linear simulation method, nonlinear simulation method, and experimentation are compared one another, in order to verify propriety of the linearization method in case of analysis of hydraulic systems. The Bode diagrams are obtained by transforming time domain data of experimental results and nonlinear simulated ones with Fourier transform. The results of nonlinear simulation are more similar to the frequency response of the real systems than those of linear simulation. It is found that nonlinearity of hydraulic systems is mainly occurred from servo valve, and nonlinearity is increased as displacement of servo valve spool increases.

  • PDF

비례전자 감압밸브의 모델링과 제어 (A Modeling of Proportional Pressure Control Valve and its Control)

  • 양경욱;이일영
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF

Development of an Electro-mechanical Driven Broaching Machine

  • Park, Hong-Seok;Park, In-Soo;Dang, Xuan-Phuong
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.7-14
    • /
    • 2015
  • The machine tools builders are trying to improve the efficiency and performance of the machine tools. The electro-mechanical driven broaching machine has many advantages such as lower noisy operating, higher energy efficiency, and smaller space of installation. This paper presents the structural and mechanical development of an electro-mechanical driven broaching machine that is replaced for traditional hydraulic one. The servo motor, ball screw and roller linear guide are used instead of hydraulic cylinder and translation frictional sliding guides. The simulation method based on FEM was applied to analyze the stress, deformation of the machine for static analysis. The dynamic analysis was carried out for verifying and assessing the mechanical behavior of the developed broaching machine. This work helps broaching machine developer make a better product at the early design stage with lower cost and development time.

브러시리스 직류모터 방식 EMDP의 구동을 위한 제어시스템 설계

  • 이희중;박문수;민병주;최형돈
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.162-170
    • /
    • 2005
  • KSLV-I의 킥모터의 추력벡터제어용 구동장치 시스템은 전기-유압식 서보 구동장치 형상으로 설계되었으며 가동노즐을 구동하는 구동장치, 유압동력을 생성하는 유압동력 생성장치, 유압동력을 구동장치에 전달해 주는 유압동력분배장치와 관성항법장치에서 입력되는 제어신호에 따라 구동장치를 제어하는 제어장치 등으로 구성되어있다. 그중에서 유압동력을 생성하는 장치는 전기모터를 이용하여 유압펌프를 구동하는 EMDP(Electric Motor Driven Pump) 방식을 채택하고 있다. 일반적으로 전기모터는 구동이 편리한 브러시 방식의 직류모터(BDC 모터)를 사용하는데 일정 고도이상에서는 사용이 용이하지 않다. 그래서 고고도에서 사용하기 위해 브러시없는 직류모터(BLDC 모터)를 이용하여 유압펌프를 구동하는 시스템을 개발하고 있다. 본 논문에서는 브러시없는 직류모터를 구동하기 위한 제어기 설계에 대하여 자세히 설명하고자 한다.

  • PDF