• Title/Summary/Keyword: Electro-chlorination

Search Result 5, Processing Time 0.021 seconds

Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process (전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화)

  • Ju, Jaehyun;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Fluoride and nitrate removal in small water treatment plants using electro-coagulation (전기응집을 이용한 소규모 수도시설의 질산성질소와 불소이온 제거)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.767-775
    • /
    • 2011
  • In this study we verified if the electro-coagulation process can treat properly the nitrate and fluoride that are not removed well in the conventional small water treatment plants which usually employ chlorination and filtration only. As we gave a change of electrode material and gap-distance between electrodes, removal efficiency of the nitrate and fluoride was determined by electro-coagulation process which were equipped with aluminum and stainless steel (SUS304) electrodes. In addition, electrode durability was investigated by determination of electrodes mass change during the repetitive experiments. Removal efficiency was great when aluminum was used as an anode material. Nitrate removals increased as electric density and number of electrodes increased, but fluoride removal was less sensitive to both parameters than nitrate. After 10 minutes of contact time with the current density from $1{\times}10^{-3}$ to $3{\times}10^{-3}A/cm^{2}$, nitrate and fluoride concentration ranged from 9.2 to 1.2mg/L and from 0.02 to 0.01mg/L, which satisfied the regulation limits. Regardless of the repeating number of experiments, removal efficiency of both ions were almost similar and the change of electrode mass ranged within ${\pm}$0.5%, indicating that the loss of the electrode mass is not so much great under the limited circumstances.

Preparation of Anatase Particles through Electro-Dialysis of TiCl4 Aqueous Solution

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.325-331
    • /
    • 2016
  • Anatase particles of titanium dioxide were prepared from $TiCl_4$ aqueous solution by using an electro-dialysis [ED] process. For the preparation of an aqueous solution of $TiCl_4$ precipitates, $TiCl_4$ liquid frozen in ice was transferred to a neck flask and then hydrolyzed using deionized [DI] $H_2O$. During the hydrolysis of the $TiCl_4$ solution at $0^{\circ}C$, a slurry solution of $TiOCl_2$ was obtained and the color changed from red to orange. The ED process was applied for the removal of chlorine content in the slurry solution. Two kinds of hydrolyzed slurry solution with lower [$Ti^{4+}$] and higher [$Ti^{4+}$] were sampled and the ED process was applied for the samples according to the removal time of [$Cl^-$]. With de-chlorination, the solution status changed from sol to gel and the color quickly changed to blue. Finally, white crystalline powders were formed and the phase was confirmed by XRD to be anatase crystallites. The morphology of the hydrous titania particles in the solution was observed by FE-SEM. The hydrous titania particles were nano-crystalline, and easily coagulated with drying.

A Development of 3 Phase Current Balance Control Algorithm (3상 전류평형 제어기술 알고리즘 개발)

  • Cheon, Y.S.;Seong, H.S.;Won, H.J.;Han, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1091-1093
    • /
    • 2001
  • The power semiconductor is widely used in the power plant or industrial field because of genealization and enlargement. It has been controlled and operated according to its own control method. Especially in case of Power plant, it plays a major role in AVR(Automatic Voltage Regulator) or electro chlorination control circuits. Generally, they used in Analog control system at above field. But each SCR current value is different because of load unbalance or switching characteristic variations, it may cause power plant unit trip or system disorder according to SCR element burn out or bad operating condition. Therefore, in this paper a development of 3 phase current balance control algorithm is described. it gets over the past analog control system limit, controls SCR gate firing angle for 3 phase current balance.

  • PDF

A Development of 3 Phase Current Balance Control Unit (3상 전류평형 제어기술 적용장치 개발)

  • Cheon, Y.S.;Seong, H.S.;Won, H.J.;Han, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1088-1090
    • /
    • 2001
  • In general, Power SCR(Silicon Controlled Rectifier) is most widely used in Power Plant as well as Industrial field. It has been controlled and operated according to its own control method. Especially, in case of Power plant, it plays a major role in AVR(Automatic Voltage Regulator) or electro chlorination control circuits. Generally, they used in Analog control system at above field. But each SCR current value is different because of load unbalance or switching characteristic variations, it may cause power plant unit trip or system disorder according to SCR element burn out or bad operating condition. Therefore, in this paper a development of 3 phase current balance control unit is described, it gets over the past analog control system limit, uses DSP(Digital signal processor) had high speed response, controls SCR gate firing angle for 3 phase current balance.

  • PDF