• Title/Summary/Keyword: Electro-chemical etching

Search Result 32, Processing Time 0.028 seconds

Arbitrary Pulse Power for Electro Chemical Etching Manufacture (전해가공용 양방향 펄스파워)

  • Kim, Sang-Uk;Kim, Jin-Hwan;Kim, Yong-Geun;Kim, Bo-Youl;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.83-86
    • /
    • 2003
  • In this paper, arbitrary pulse power for electro chemical etching, which manufactures the groove of fluid dynamic bearing and aero dynamic bearing, is presented. For high precision manufacture, we generally use high precision CNC machine. However, this case has the disadvantage that cost is very expensive and bur due to bites of tool can be generated. So most of companies are interested in the method of electro chemical etching. But for more precision results, it is important to decision the parameters of electrical conditions, such as currents and frequency. We designed and made the arbitrary pulse power system easy to input the parameters for optimal conditions. Experimental results show the effectiveness of the system strategy proposed for the high precision manufacture.

  • PDF

Fabrication of Tungsten Probe using Electro-Chemical Etching (전기화학적 에칭을 이용한 텅스텐 미세 탐침 가공)

  • In, Chi-Hyun;Kim, Gyu-Man;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • Tungsten probe is the most important part of a probe card, which is widely used for the performance test of wafer chips. Electro chemical etching becomes an exclusive choice for mass production of the tungsten probes. In the mass production, not only the shape of the probe but also the shape distribution of machined probes is important. A new method is proposed for the mass production of the tungsten probes. Tungsten wires are separated by a distance, and dipped into electrolyte. The dipping rate is controlled to shape the probes. Several experimental tests are performed to study the machining characteristics. From the test results, machining parameters including electrical conditions and anode position showed significant influences on the shape, repeatability, precision and quality of sharp tips.

  • PDF

Studies on chemical wet etching of GaN (GaN계 질화합물 반도체의 습식식각 연구)

  • 윤관기;이성대;이일형;최용석;유순재;이진구
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.398-400
    • /
    • 1998
  • In this paper, the etching studies for n-GaN were carried out using the wet chemical, the photo-enhanced-chemical, and the electro-chemical etching methods. The experimental results show that n-GaN is etched in diluted NaOH solution at room temperture and the etched thickness of NaOH and electron concentrations. Te etching rate of n-GaN samples with n.simeq.1*10$^{19}$ cm$^{-3}$ were used to compare the photo-enhanced-chemical etching with the electrochemical etching methods. The removed thickness was 680.angs./25min by the electrochemical etching methods. The removed thickness was 680 .angs./25min by the electrochemical etching method ad 784.angs./25min by the photoenhanced-chemical etching method. The patterns are 100.mu.m*100.mu.m rectangulars covered with SiO$_{2}$film. It is shown that the profile of etched side-wall of the pattern is vertical without dependance of the n-GaN orientations.

  • PDF

Wet chemical etching of GaN (GaN의 습식 화학식각 특성)

  • 최용석;유순재;윤관기;이일형;이진구;임종수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.249-254
    • /
    • 1998
  • The etching experiments for n-GaN were done using the wet chemical, photo-enhanced-chemical and electro-chemical etching methods. The experimental results show that n-GaN is etched is diluted NaOH solution at room temperature and the removed thickness of n-GaN is linearly increased with etching times. The etching rate of the photo-enhanced-chemical and electro-chemical etching methods are several times higher than that of the wet chemical method. The maximum etching rate of n-GaN with $n{\fallingdotseq}1{\times}10^{19}cm^{-3}$ was 164 $\AA$/min under the experimental condition of the Photo-enhanced-chemical etching. The etching rates of n-GaN are very much dependant on the electron concentrations of the samples. The pattern is $100{\mu}m{\times}100{\mu}m$ rectangulars covered with $SiO_2$film. It is shown that the etched side-wall charactistics of the pattern is vertical without dependance of the n-GaN orientations, and the smoothness of etched n-GaN surface is fairly flat.

  • PDF

A Study of Deburring using Electro-Chemical Method (전해연마를 이용한 버 제거에 관한 연구)

  • Kang D. C.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.217-220
    • /
    • 2001
  • In the shearing process the burr or rollover must be minimized in order to improve the quality of product. The burr size can be minimized by control of several process parameters. But removal of all burrs are impossible. Most mechanical type deburring methods (vibrating bowls, rotating barrels, shot blasting, for example.) will remove large burrs, other methods use chemical (electro-chemical deburring) or heat (thermal energy deburring). The electro-chemical deburring process removes burrs by the deplating method. Electro-chemical deburring equipment is requires a small capital investment than other methods(mechanical or thermal methods). Electro-chemical deburring method need to many parameters for control such as a time, voltage and concentration of electrolyte. In this paper shows relations of these parameters by experiment.

  • PDF

Fabrication of ultra-sharp tungsten tip using electro-chemical etching system (전기화학적 에칭방법을 이용한 초미세 바늘 전극 제작)

  • 오현주;장동영;강승언
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.449-452
    • /
    • 2004
  • To obtain the ultra-sharp tungsten tip, an analog to digital converter circuit aided by a personal computer has been setup. At the moment the lower part of the needle drops off during the etching process, a maximum current change across the reference resistor is detected by the PC interface card and the applied voltage is then cut off within a few milliseconds. Out experiment has been able to fabricate an ultra-sharp tungsten tip ~200 $\AA$ radius with a higher reproduction rate and reliability than the conventional method.

  • PDF

A experimental study about plasma ion treatment to improve hardness of electro-polished surface (전해연마면의 표면경도 향상을 위한 플라즈마 이온질화 처리법에 관한 실험적 연구)

  • Kim, Jin-Beom;Hong, Pil-Gi;Seo, Tae-Il;Son, Chang-Woo
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • The size and prospects of the domestic semiconductor equipment market are increasing every year. In the case of various parts used inside semiconductor equipments, high durability such as high strength and abrasion resistance is demanded. Particularly, the gases used in semiconductor production processes are toxic. In order to prevent such toxic gas leakage, a precision processing technique and a surface treatment technique for preventing corrosion are required. Electro-polishing is an electro-chemical method of polishing a metal surface to make it smooth and polished. Electro-polishing is mainly used in the finishing process of metal surface. Unlike mechanical polishing, electro-polishing is used in many fields, such as fine chemical etching equipment, since no damaged layer or burr, fine polishing groove and particles are generated. However, in order to withstand the gas used in the semiconductor equipment, the parts must have high corrosion resistance. However, the surface hardness generally become lowered through electro-polishing. Therefore, in this study, surface hardness were experimentally observed before and after electro-polishing. Then, a method of improving hardness by preparing a nitrided layer by plasma ion nitriding treatment.

Study of Etching Method for Plating Layer Formation of ABS Resin (ABS 수지상의 도금층 형성을 위한 에칭 방법 연구)

  • Choi, Kyoung Su;Choi, Ki Duk;Shin, Hyun Jun;Lee, Sang-Ki;Choi, Soon Don
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.128-136
    • /
    • 2014
  • In the present study, we successfully developed an eco-friendly chemical etching solution and proper condition for plating on ABS material. The mechanism of forming Ni plating layer on ABS substrate is known as following. In general, the etching solution used for the etching process is a solution of chromic acid and sulfuric acid. The etching solution is given to the surface resulting in elution of butadiene group, so-called anchor effect. Such a rough surface can easily adsorb catalyst resulting in the increase of adhesion between ABS substrate and Ni plating layer. However a use of chromic acid is harmful to environment. It is, therefore, essential to develop a new alternative solution. In the present study, we proposed an eco-friendly etching solution composed of potassium permanganate, sulfuric acid and phosphoric acid. This solution was testified to observe the surface microstructure and the pore size of electrical Ni plating layer, and the adhesive correlation between deposited layers fabricated by electro Ni plating was confirmed. The result of the present study, the newly developed, eco-friendly etching solution, which is a mixture of potassium permanganate 25 g/L, sulfuric acid 650ml/L and phosphoric acid 250ml/L, has a similar etching effect and adhesion property, compared with the commercially used chromium acid solution in the condition at $70^{\circ}C$ for 5 min.

The Synthesis of Diamond/WC-Co Thin Film by HE-CVD (HE-CVD법에 의한 Diamond/WC-Co 박막합성)

  • Lee, Kee-Sun;Seo, Sung-Man;Shin, Dong-Uk;Kim, Dong-Sun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.185-189
    • /
    • 2003
  • The effect of surface roughness of the substrate on HF-CVD diamond coating was researched. The surface roughness was changed variously by electro-chemical etching conditions. The etching process acted to remove the metallic cobalt from the WC-Co. Diamond nucleation density was higher in etched the substrate. Therefore, the etching process was effective in both Co-removal and higher surface roughness, leading to the improving the diamond nucleation and deposition.

  • PDF