• Title/Summary/Keyword: Electro-Magnetic Force

Search Result 157, Processing Time 0.03 seconds

Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor (브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과)

  • 전연도;약미진치;이주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.

Oscillation Control for a Electro-Magnetic Vibratory Gyroscope (전자기력을 이용한 진동형 자이로의 가진루프제어)

  • Kong, Hyeong-Jik;Lee, Sug-Chon;Park, Sung-Su;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 2005
  • This paper presents the design of the Automatic Gain Control (AGC) system for the drive axis of a electro-magnetic driven cylinder gyroscope. The simulation and experimental results show that the designed AGC excites the cylinder at its natural frequency and maintains a specified amplitude of oscillations, and also track the natural frequency shifts due to temperature variations. The sensing performance of the AGC driven gyroscope is shown to be greatly improved compared to that of the open-loop driven one.

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.

A Study on the Problem of Permanent Magnet Linear Synchronous Motor According to End Effect (영구자석형 선형동기전동기의 단부효과에 의한 문제점 연구)

  • Kim, Duk-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.71-77
    • /
    • 2010
  • A discontinuity of magnetic circuits according to the end effect is generated in PMLSM. And magnetic state of the 3 phase coils becomes unbalanced. Due to the unbalanced magnetic state, the unbalanced flux linkage, back electro-magnetic force and inductance of the 3 phase coils appear. In result, the circulating current is generated by unbalanced inductance even if the input voltages are in balanced state. Then the thrust and efficiency are decreased because of the circulating current. Therefore, in this paper, the unbalanced inductance and the thrust reduction according to discontinuity of magnetic circuits are analyzed by FEA(2D). To demonstrate the validity of the analysis results, the experiment results are compared with analysis results.

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.

Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve (직동식 공압서보밸브의 Force Motor 설계 및 성능시험)

  • 이원희;김동수;박상운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

Experimental Research of Change in Magnetic Flux Density Due to Load for Measuring KI (응력확대계수측정을 위한 하중에 의한 자속밀도변화의 실험적 연구)

  • Lee, Jeong-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.129-132
    • /
    • 2004
  • In order to determine the effective way of measuring the Mode I stress intensity factor, $K_I$, by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux density above the cracked specimen surface was studied experimentally. The change in magnetic flux in the air above the cracked specimen made of aluminum alloy is measured by changing the load by four-point bending. The magnetic flux in the air is almost not changed by increasing the load in teh specimen. The change in potential drop due to load is not caused by the change in electro-motive force induced in the coiled measuring system. This experimental result agree to the result of theoretical analysis in reference 7).

  • PDF

The Analysis and Experiments for the Design of Electro-mechanical Variable Valve Train System (VVT용 전자식 흡/배기 밸브 시스템 설계를 위한 해석 및 실험)

  • 박승현;오성진;이종화;박경석;김도중
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.60-67
    • /
    • 2001
  • As a method of variable valve train(VVT), Electro-Mechanical Valve(EMV) has been studied. Compared with conventional VVT system, the EMV system has a relatively simple structure. The system has two electromagnets, springs and an armature. The system can be operated by reciprocal action between armature and two electromagnets. And, the operating event can be controlled by electrical signal from controller. Therefore, reduction of emission and fuel consumption can be achieved through valve event control at each engine operating condition. In this study, characteristics of EMV system were investigated by simulations and experiments. The results of simulation and experiment show that the core shape and material characteristics are dominant parameters on magnetic force and delay time. In order to apply the system to commercial engine, it has a compact size and high stiffness springs(50N/mm) to increase the valve speed. Because of high valve seating velocity, loud noise and high impact force generated, which can lead to reduction of actuator durability. Therefore, further research is required to reduce valve seating velocity.

  • PDF

Dynamic analysis and control parameters deduction of Hybrid thrust magnetic bearing (하이브리드 스러스트 마그네틱 베어링의 제어변수 도출 및 동특성 해석)

  • Jang, Seok-Myeong;Lee, Un-Ho;Sung, So-Young;Choi, Jang-Young;Kim, Soon-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.724_725
    • /
    • 2009
  • This paper deals with control parameters deduction and dynamic analysis of hybrid thrust magnetic bearing(HTMB). The flux density at air-gap is obtained from system modeling which considers permanent magnet and electro magnet. The vertical force is derived from flux density using maxwell's stress tensor. An accurate linear model is obtained by using linear approximations of the attraction force around the nominal equilibrium point. The dynamic simulation of the HTMB using the PD controller is conducted and control parameters are deducted.

  • PDF