• Title/Summary/Keyword: Electro-Hydraulic Servo Systems

Search Result 51, Processing Time 0.028 seconds

A high speed electro-hydraulic no leakage servo valve using multilayered piezoelectric devices (PZT) and an observer

  • Yokota, Shinichi;Park, Jung-Ho;Fuwa, Akihiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.54-59
    • /
    • 1994
  • In this study, a high-speed servo valve with no outer leakage is developed, which is used to drive flexible hydraulic actuators (FHA) for extreme environments. In the valve, multilayered PZT devices are used to drive a spool directly and quickly. A bellows is also used to prevent outer leak from the clearance between the spool and the sleeve. Employing a disturbance observer, the lack of the system damping of the valve is improved by feeding back the estimated velocity of the spool, as well as the estimated disturbance is fed back to eliminate effectively the hysteresis between input voltage and output displacement of the PZT devices.

  • PDF

Microcomputer Control of Electronic-Hydraulic Three-Point Hitch for Agricultural Tractors ( I ) -Computer Simulation- (농용(農用) 트랙터 3점(點)히치시스템의 마이크로컴퓨터 제어(制御)( I ) -컴퓨터 시뮬레이션-)

  • Ryu, K.H.;Yoo, S.N.;Kim, Y.S.;Kim, G.Y.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.18-26
    • /
    • 1992
  • A mechanical-hydraulic hitch control system has been adapted to most agricultural tractors. But it has various defects due to friction, inertia and hysteresis. Recently a number of electronic-hydraulic hitch control systems have been developed in several countries to improve control performance of the agricultural tractors equipped with a mechanical-hydraulic hitch control system. This study was conducted to develop a new electronic-hydraulic hitch control system using an electro-hydraulic servo valve instead of an on-off valve and to carry out computer simulation of the system. According to the result of computer simulation, the control system showed the best performance when the proportional constants were 9 and 4 for position and draft control respectively. The step and frequency responses were improved as flow rate increased.

  • PDF

Position Control of an Electro Hydraulic Actuator Using Adaptive Control Method (적응제어 기법을 이용한 전기-유압 액츄에이터의 위치제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • This paper deals with the issue of simple adaptive position control for a pump-controlled cylinder system. A fixed displacement pump is utilized instead of servo valve and its speed is controlled by AC motor. The whole control system is composed of a pair of interconnected subsystems, that is, a feedback control system and a feedforward control system. From experiments it is shown that position control using simple adaptive control can accomplish significant reduction in position tracking error comparing to a conventional PID control.

  • PDF

3D CAD Modeling of a Hydraulic Motor-Load System and Adaptive Control (유압모터-부하계의 3D CAD 모델링 및 적응제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • This paper investigates the motion control of a hydraulic motor-load system using the Simple Adaptive Control (SAC) method. The plant transfer function has been modelled mathematically. The open-loop responses have been obtained experimentally in order to identify the design parameters of transfer function. The hydraulic motor-load system has been modelled using the 3D CAD and imbedded in the hydraulic circuit simulation program to verify the overall performance. The experimental results confirm that the SAC method gives a good tracking performance compared to the PID control.

A Study on Development of the Characteristic Analysis and CAD System for Hydraulic System Using Modular Approach (모듈화를 이용한 유압 시스템의 특성해석 및 설계 시스템의 개발에 관한 연구)

  • Lee, Yong-Joo;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, an analysis and design for hydraulic control system was developed. By using this system, the operator is able to simulate dynamic performance of the system without possessing special knowledge of software or control engineering. A graphical user interface was adopted in the system and all speration for simulation can be done by using window facilities on the display. The electro-hydraulic servo system is simulated to present the performances of the program and compared with the result of Matlab and experiment.

  • PDF

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

An adaptive control algorithm for the speed control of hydraulic-servo system (유압 서보 시스템의 속도 제어를 위한 적응제어기의 설계에 관한 연구)

  • Yun, Ji-Seop;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1986
  • An adaptive controller which is robust to the unknown load disturbance is developed for electro-hydraulic speed control systems. Since the load disturbance degrades the performance of the controller such as a steady state error and rise time in the conventional control system, appropriate adjustment of the controller is necessary in order to obtain the desired performances. The adaptation mechanism was designed to tune the feedforward gain, based upon minimization of ITAE (integral of time-multiplied absolute error) performance. The unknown load distrubance was identified by using an analog computer from the relationship between the velocity of the hydraulic motor and the load pressure. To evaluate the performance of the controller a series of simulations and experiments were conducted for various load conditions. Both results show that the proposed adaptive controller shows abetter performance than the conventional controller in terms of the steady state error and rise time.

  • PDF

A Study on the Trouble of Turbine EHC System by Chloride (염소성분에 의한 터빈 EHC계통 손상에 관한 연구)

  • Kim, Seung Min;Yang, Cheon Gyu;Yoon, Gi Nam;Jung, Jae Won;Shin, Yeul Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.366-372
    • /
    • 2000
  • In a power plant, it is generally accepted that a turbine governor system is necessary to control amount of steam supply toward the turbine system. There are many kinds of trouble at this governor system, which is recognized one of the most sensitive systems in the power plant. Especially we have experienced the internal leakage of motorization oil of servo valve. In the study, we investigated the mechanism of an internal leakage such as erosion by foreign materials and corrosion by chemical reaction between chloric healed oil and motorization oil. A precautionary measures is also performed to help the field service engineers.

  • PDF

A Study on Compensation Method for Variable Loads in Electro-Hydraulic Servomechanism Using Load Pressure feedback (부하압력 피이드백을 이용한 전기-유압 서어보계의 부하변동 보상에 관한 연구)

  • Kim, Jong-Kyum;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.83-93
    • /
    • 1990
  • The characteristics of servo systems are desired to be independent for any unpredicted operational condition. The relation between input current and output flowrate of the servovalve is dependent on the load pressure and the idea of compensation using the load pressure feedback is fundamental theory in this paper. With this idea, this paper researches the performance improvement of hydraulic position control system. Static characteristics of compensated system is analyzed by means of analog computer simulation, digital computer simulation and experiment for nonlinear model and linearized model, respectively.

  • PDF

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.