• Title/Summary/Keyword: Electro-Hydraulic Actuator

Search Result 76, Processing Time 0.032 seconds

A Hydraulic Power Steering System Based on Electro Hydrostatic Actuator (전기 정유압 구동기를 적용한 유압식 동력 조향 시스템)

  • Li, Z.M.;Lee, J.M.;Park, S.H.;Kim, J.S.;Park, Y.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.86-94
    • /
    • 2011
  • In this paper, an electro hydraulic power steering system based on electro hydrostatic actuator (EHA) is proposed. A detailed steering model for the proposed electro hydraulic power steering system including mechanical and hydraulic subsystems is established. A conventional electro hydraulic power steering system is also modeled to evaluate the performance of the proposed power steering system such as responsiveness, assist force, command tracking and steering feel by computer simulation. From the computer simulation results, it is found that the proposed power steering system based on EHA has desirable performance.

A study on Energy Saving of the Excavator using Electro-Hydraulic Actuator (전기-유압 액추에이터를 이용한 굴삭기 에너지 절감에 관한 기초 연구)

  • Yoon, Hong-Soo;Ahan, Kyung-Kwan;Lee, Byung-Lyong;Kang, Jong-Min;Kim, Jae-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.801-805
    • /
    • 2008
  • Today, hydraulic systems play an important role in modern industry for the reasons that hydraulic actuator systems take many advantages over other technologies with high durability and the ability to produce large forces at high speeds. In recent years, electro-hydraulic actuator systems, which combine electric and hydraulic technology into a compact unit, have been adapted to a wide variety of force, speed and torque requirements. Moreover these systems resolve energy consumption and noise problems characteristic existed in the conventional hydraulic systems. Therefore, these systems have a wide range application fields especially in an excavator. So the purpose of this paper is to demonstrate efficiency of the energy saving and present some control algorithms which apply to electro-hydraulic actuator system in the bucket of the excavator. Experiments are carried out to verify the effectiveness of the proposed system with various external loads as in real working conditions.

  • PDF

Static Characteristics of Electro-Hydraulic Spring Return Actuator (전기유압식 스프링복귀 액추에이터 정특성)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

Development of an Electro-hydraulic Soft Zipping Actuator with Self-sensing Mechanism (자가 변위 측정이 가능한 전기-유압식 소프트 지핑 구동기의 개발)

  • Lee, Dongyoung;Kwak, Bokeon;Bae, Joonbum
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • Soft fluidic actuators (SFAs) are widely utilized in various areas such as wearable systems due to the inherent compliance which allows safe and flexible interaction. However, SFA-driven systems generally require a large pump, multiple valves and tubes, which hinders to develop a miniaturized system with small range of motion. Thus, a highly integrated soft actuator needs to be developed for implementing a compact SFA-driven system. In this study, we propose an electro-hydraulic soft zipping actuator that can be used as a miniature pump. This actuator exerts tactile force as a dielectric liquid contained inside the actuator pressurized its deformable part. In addition, the proposed actuator can estimate the internal dielectric liquid thickness by using its self-sensing function. Besides, the electrical characteristics and driving performance of the proposed system were verified through experiments.

Active Suspension using Disturbance Accommodating Sliding Mode Control (능동 현가 장치의 외란 적응 슬라이딩 모드 제어)

  • 김종래;김진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

Performance Analysis of an Electro-Hydrostatic Actuator (Electro-Hydrostatic Actuator의 성능해석)

  • Kim, Do-Hyun;Kim, Doo-Man;Hong, Yeh-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.316-322
    • /
    • 2007
  • The EHA(Electro-hydrostatic Actuator) reveals completely different characteristics from the conventional valve-controlled Electro-hydraulic actuators. In this paper, its mathematical model including nonlinear elements was derived to be verified by experiments. Based on this, a simulation program was developed for the EHAs consisting of an electric motor driven hydraulic pump, pipe lines and a cylinder. The influence of important design parameters such as peak motor torque and rotational inertia moment of the hydraulic pump on control performance was investigated, where the test condition was intentionally selected so that the motor torque was saturated during the transient phase. As a result, design requirements for improving the control accuracy under full speed operation conditions of the EHAs were investigated.

Identification and Control of Position Control System for Electro-Hydraulic Actuator (EHA) (EHA(Electro-Hydrostatic Actuator) 위치제어 시스템의 모델링 및 제어)

  • Park, Y.H.;Park, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • In this paper, an optimal PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(ERA) systems with system uncertainties and saturation in the motor. An ERA prototype is developed and system modeling and parameter identification are executed. Then, optimal PID and optimal anti-windup PID controller are designed based on identified system model by using optimization toolbox in MA TLAB/Simulink and the performance of the two control systems are compared by experiment. It was found that the optimal anti-windup PID control system has better performance than the optimal anti-windup PID control system.