• Title/Summary/Keyword: Electricity Vehicle

Search Result 136, Processing Time 0.025 seconds

A Study on the Decision of Appropriate Subsidy Levels Regarding Electric Vehicles for V2G as Load Management Resources (V2G 전기자동차의 부하관리 자원 활용을 위한 적정 지원금 산정에 관한 연구)

  • Kim, Jung-Hoon;Hwang, Sung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.264-268
    • /
    • 2016
  • Recently, various energy efficiency optimization activities are ongoing globally by integrating conventional grids with ICT (Information and Communication Technology). In this sense, various smart grid projects, which power suppliers and consumers exchange useful informations bilaterally in real time, have been being carried out. The electric vehicle diffusion program is one of the projects and it has been spotlighted because it could resolve green gas problem, fuel economy and tightening environmental regulations. In this paper, the economics of V2G system which consists of electric vehicles and the charging infrastructure is evaluated comparing electric vehicles for V2G with common electric vehicles. Additional benefits of V2G are analyzed in the viewpoint of load leveling, frequency regulation and operation reserve. To find this benefit, electricity sales is modeled mathematically considering depth of discharge, maximum capacity reduction, etc. Benefit and cost analysis methods with the modeling are proposed to decide whether the introduction of V2G systems. Additionally, the methods will contribute to derive the future production and the unit cost of electric vehicle and battery and to get the technical and economic analysis.

New Energy Business Revitalization Model with Smart Energy System: Focused on ESS, EV, DR (스마트에너지 방식을 적용한 전력신산업 활성화 모델 사례 연구: ESS, 전기차 충전, 전력수요관리 중심으로)

  • Jae Woo, Shin
    • Journal of Information Technology Services
    • /
    • v.21 no.6
    • /
    • pp.117-125
    • /
    • 2022
  • In respond to climate change caused by global environmental problems, countries around the world are actively promoting the advancement of new electricity industries. The new energy business is being applied to energy storage systems (ESS), electric vehicle charging business, and power demand response using cutting edge technologies. In 2022, the Korean government is also establishing a policy stance to foster new energy industries and making efforts to improve its responsiveness to power demand response with the innovative technologies. In Korea, attempts to commercialize energy power are also being made in the private and public sectors to control energy power in houses, buildings, and industries. For example, private companies, local governments, and central government are making all-out efforts to develop new energy industry models through joint investment. There are forms such as establishing energy-independent facilities by region, establishing an electric vehicle charging system, controlling urban lighting systems with Information technologies, and managing demand between power suppliers and power consumers. This study examined the business model applied with energy storage system, electric vehicle charging business, smart lighting, and power demand response based on information communication technology to examine the site where smart energy system was introduced. According to this study, company missions and government tasks are suggested to apply new energy business technologies as economical energy solutions that meet the purpose of use by region, industry, and company.

An Analysis of the Effects of Fuel-transition in Transportation Sector: Focusing on Business Cars (수송부문 연료전환 효과 분석: 사업용 승용차 부문을 중심으로)

  • Kim, Jae Yeob;Kim, Bia;Park, Myung D.
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.443-468
    • /
    • 2020
  • Broad effects of fuel-transition in all type of ground transportation have occurred with the help of the advances in electric vehicle (EV) technologies and the increases in EV supply. This research estimates the economic benefit of air environmental improvements, which results from the fuel-transition of high-mileage business cars(taxies) in metropolis. If we consider power production sector for EV operation, some air pollutants will be produced. In this respect, this research takes both the mixture of power sources in power production level and the driving pattern of business cars into account when investigating the economic benefit in air environment resulted from the fuel-transition of business cars(taxies). According to our results, the business cars' fuel transition from LPG to electricity brings about 21.5₩/km (8.6million won/year) of economic benefit in air environment. These results emphasize the necessity and appropriateness of public polices for expanding power production with renewable energies and facilitating EV distribution.

Dynamometer Test for the CVT System using Spring

  • Kwon, Young-Woong;Yang, Seung-Bok
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.222-228
    • /
    • 2022
  • As a means to cope with the climate change crisis caused by global warming, automobile manufacturers continue to make efforts to use the driving energy of vehicles as electricity. As a result, parts industry such as battery, motor, and controller are attracting attention. China is often seen in large cities, with electric vehicles such as electric bicycles, electric motorcycles, and small electric vehicles popularized and commercialized, mainly in large cities. However, small electric vehicles are not popular in Korea, which is why the country's topography is high in hills. In order to drive the hilly domestic roads, power performance including vehicle climbing ability should be improved. In order to improve the power performance and the climbing capacity of small electric vehicles, the capacity of the motor should be increased. However, when the performance of the motor is improved, the weight of the motor becomes heavy and the price competitiveness is likely to decrease. In addition, in order to operate a high-performance motor, the power consumption of the battery is rapidly increased, so various problems must be solved. In order to commercialize a small electric vehicle for one or two people who do not emit harmful exhaust gas to the human body in a hilly domestic terrain, it is effective to have a separate transmission system. In this study, we were conducted dynamometer test to produce a continuously variable transmission(CVT) system prototype using a spring that can be applied to a small electric vehicle and to install a CVT system prototype manufactured in a small electric vehicle. The dynamometer test results showed that the maximum speed performance, acceleration performance, and climbing performance were improved.

Dynamic Equivalent Battery as a Metric to Evaluate the Demand Response Performance of an EV Fleet

  • Yoon, Sung Hyun;Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2220-2226
    • /
    • 2018
  • Electric vehicles (EVs) are significant resources for demand response (DR). Thus, it is essential for EV aggregators to quantitatively evaluate their capability for DR. In this paper, a concept of dynamic equivalent battery (DEB) is proposed as a metric for evaluating the DR performance using EVs. The DEB is the available virtual battery for DR. The capacity of DEB is determined from stochastic calculation while satisfying the charging requirements of each EV, and it varies also with time. Further, a new indicator based on the DEB and time-varying electricity prices, named as value of DEB (VoDEB), is introduced to quantify the value of DEB coupled with the electricity prices. The effectiveness of the DEB and the VoDEB as metrics for the DR performance of EVs is verified with the simulations, where the difference of charging cost reduction between direct charging and optimized bidding methods is used to express the DR performance. The simulation results show that the proposed metrics accord well with the DR performance of an EV fleet. Thus, an EV aggregator may utilize the proposed concepts of DEB and VoDEB for designing an incentive scheme to EV users, who participate in a DR program.

Correlation Analysis between the Renewable Energy Source Generation and the Utilization for Smart Grid in Korea (한국의 스마트 그리드를 위한 신재생에너지원 생산과 활용률 간의 상관관계 분석)

  • Hyun, Jung Suk;Park, Chan Jung;Lee, Junghoon;Park, Kyung Leen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.347-353
    • /
    • 2017
  • In order to prohibit global warming, various kinds of regulatory policies have been established in the whole world. One example is the establishment of the Renewable Portfolio Standard. It requires the increased portion in energy production from renewable energy sources. The Republic of Korea adopted the act on the promotion of the development, use, and diffusion of new and renewable energy since 2012. However, in spite of the effort on the consideration of the renewable energy sources, it was reported the carbon intensity of electricity in Korea was not that low in 2015. Thus, it is required to examine the recent state of the utilization degree of the renewable energy sources in Korea. This paper analyzed the statistical data provided by Korea Power Exchange (KPX) to examine any problems and solutions for generating electricity from the renewable energy sources. We focused on the generation capacity provided by the power plants participated in the market, the electric power trading amount, and the utilization coefficient for 10 years. By analyzing the data, we provide an alternative to solve some imbalance among the factors contributing to renewable energy use.

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Study on Potential Feasibility of Biomethane as a Transport Fuel in Korea (수송용 대체연료로서 바이오메탄의 잠재적 타당성 연구)

  • Kim, Jae-Kon;Lee, Don-Min;Park, Chun-Kyu;Yim, Eui-Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Young-Sam
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.17-28
    • /
    • 2011
  • Biogas production and utilization are an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy sectors such as space heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded that is mainly the removal of carbon dioxide to increase the methane content up to more than 95 ~ 97 vol% in some cases, similar to the composition of fossil-based natural gas. Usage of Biogas as a fuel of vehicles have an effect of reducing $CO_2$ emission compared to fossil fuels. Biomethane which is produced by upgrading of biogas is regarded as a good alternative energy and usage of clean energy is encouraged to deal with air pollution and waste management as well as production of clean energy. Recently, biogas projects for vehicle fuel are newly being launched and Korea government have also announced a plan for investment to develop biogas as a transport fuel. In this study, it is aimed to examine the potential feasibility of biomethane as a transport fuel. As a results, the status of biomethane, quality standard, quality characteristics, and upgrading technology of biogas were investigated to evaluate of biogas as a vehicle fuel of transportation.

Design and Electrical Properties of Piezoelectric Energy Harvester for Roadway (도로용 압전발전발판 설계 및 발전특성 평가)

  • Kim, Chang-Il;Lee, Joo-Hee;Kim, Kyung-Bum;Jeong, Young-Hun;Cho, Jeong-Ho;Paik, Jong-Hoo;Lee, Young-Jin;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.554-558
    • /
    • 2011
  • Piezoelectric energy harvester (PEH) as a box type was fabricated in order to harvest mechanical energy imparted to roadways from passing vehicles and convert it into electricity. The PEH was composed of 72 piezoelectric cantilevers with 9 springs with elasticity stick to a bottom of the PEH. For the single piezoelectric cantilever, when a single push with approximately 5 mm displacement was incident to it, power of 0.355 mW was produced at $100\;k{\Omega}$. It is found that the power from the single piezoelectric cantilever increases when spring constant is high. We investigated power of PEH when the moving vehicle passes in it. Power was increased with increasing vehicle speed. When vehicle speed is 30 km/h, power is 20.6 mW.

A Study on the Construction of Charging System for Small Electric Vehicles Less than 1 [kW] (1[kW] 이하의 소형 전동차량용 충전설비 구축에 관한 연구)

  • Kim, Keunsik
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.93-99
    • /
    • 2019
  • Small electric vehicles, such as electric bicycles or electric kickboards, operate with the power charged in a battery mounted in the vehicle, and some of these users use emergency power sockets installed in apartments or public facilities without getting permission. For this reason, the necessity for a simple method to approve the use of power with instant payment system rises for the building managers and small vehicle users as well. In this paper, we propose a technique to charge batteries for small electric vehicles with less than 1 [kW] through a power supply control device installed on the existing 15 [A]. sockets on the common residential properties or public buildings. It also describes the power user authorization algorithm and how to charge fees for the power used. As a result of this research, this paper shows how the user authentication power supply system with the effect of preventing power theft can be realized by creating an environment in which a battery in a small electric vehicle can be easily charged.