• Title/Summary/Keyword: Electricity Supply

Search Result 650, Processing Time 0.025 seconds

Performance Analysis of Heating Nonslip using Solar Power Energy (태양광 에너지를 이용한 발열논슬립의 성능분석)

  • Moon, Jong Wook;Choe, Jae Won;Yun, Seok Heon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2018
  • This study aims to analyze the performance of Heated-nonslip using renewable energy to prevent nonslip freezing during winter. For this purpose, power generation system and congratulatory devices using solar energy are designed, and it is designed to provide regular electricity to heat up nonslip through Electrical storage system(ESS). In this study, It is intended to analyze the level of electrical energy suitable for nonslip using 24V or 48V, and to measure the temperature changes and temperature distribution according to the location of the test object. As a result of the experiment, nonslip's frame temperature was measured at $-7.5{\sim}-5^{\circ}C$ on average, and $-1{\sim}-2^{\circ}C$ on the heating cable during the supply of 24V and this could not be the solution for defrosting freezing nonslip in the winter. As a result of heating nonslip by supplying 48V with an electrical power of 8W, the temperature of the nonslip was shown to be between $5^{\circ}C$ and $11^{\circ}C$ to $13^{\circ}C$. Even if the power supply was switched on and off every minute, the temperature did not drop below $4^{\circ}C$ and the frozen ice melted on the nonslip without freezing.

Let Us Make: Interrogating Personnel's Perception towards Makerspace in a Nigerian University Library

  • Igbinovia, Magnus Osahon;Alex-Nmecha, Juliet C.
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.11 no.2
    • /
    • pp.23-36
    • /
    • 2021
  • Makerspace offers an innovative way for university libraries to render services and achieve its core objectives. However, there is low level of adoption in Nigerian university libraries, hence the need to investigate the personnel's perception towards makerspace as an innovative learning platform. To achieve this, the descriptive research design was used to elicit data with the aid of a structured questionnaire, from the 96 library personnel in John Harris Library, University of Benin. Of the 96 copies of questionnaire distributed, 68 copies were returned and analyzed using descriptive statistics. The results showed that the library personnel were familiar with makerspace even though they still require more information about it. Also, that makerspace gives students the opportunity to acquire ew skill and enhances collaboration among learners. Moreover, the study revealed that budget constraints, high cost and maintenance of equipments, erratic power supply and lack of staff training are some of the perceived challenges to makerspace implementation. Consequently, the study revealed that university libraries should strategize on how to increase allocation of funds, organize makerspace webinar for personnel, ensure stable electricity supply and create a dedicated space for makerspace in the library. In conclusion, makerspace will provide students with the technological exposure and creative abilities required for the future, and as such effective planning should be made for its deployment and sustainability in Nigerian university libraries.

The Study on the Analysis of Elemental Maintenance Costs for Educational Facilities

  • Hyun-Wook Kang;Seung-Wook Lee;Sung- Ryul Bae;Byoung-Jun Min;Moon-Sun Park;Yong-Su Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1254-1259
    • /
    • 2009
  • The purpose of this study is to analyze elemental maintenance costs for educational buildings. The adapted research method selected three school buildings in Seoul as BTL projects. On the basis of the selected case, the study suggested a model to establish a system for each parts and to estimate analyzed maintenance costs through that system. According to the analysis, the study proposed a partial maintenance costs standard and analyzed proper maintenance costs. The results of this study are as follows 1) The system is divided into 8 large-groups and 24 small-groups for the analysis elemental maintenance costs. 2) The average rations followed by analysis of partial maintenance costs of the three school buildings are as followings, the total maintenance costs are analyzed 3,992 million won and each part of average rations is exterior of building 10.9%, interior of building 41.58%, electricity & fire fighting facility 14.22%, water supply & healthy facility 11.39%, heating & water supply facility 12.93%, landscape 6.3%, civil engineering works 2.69%.

  • PDF

A Study on North Korea's Residential Environment in the Kim Jong-un

  • Sun-Ju KIM
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.4
    • /
    • pp.11-18
    • /
    • 2023
  • Purpose: The purpose of this study is to present policy implications by analyzing the residential environment in North Korea under the Kim Jong-un regime. Research design, data, and methodology: Residential environment analysis was reviewed by dividing it into physical, socio-cultural, economic, environmental, and policy aspects. Results: Pyongyang are considerably superior due to it being the residence of the country's leadership and middle class. Secondly, there is a concerning problem with the provision of substandard housing. Construction materials are in short supply, and unreasonable timelines often lead to uninhabitable houses, signaling a need for assistance in housing construction. Thirdly, there is a severe lack of essential residential infrastructure, such as reliable electricity and clean water supply, which significantly impacts the quality of life. Lastly, due to the country's economic hardships, basic housing rights are not guaranteed, leading to deplorable living conditions for many North Koreans. The report suggests that these issues should be addressed through international aid to guarantee the basic human rights of North Koreans. Conclusions: In North Korea, the poor living environment deteriorates the health and quality of life of citizens and adversely affects social and economic development. Therefore, international support and cooperation to improve the living environment of North Koreans is important.

Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea (한국의 호주 청정 수소 수입을 위한 공급망의 경제성 및 환경영향 평가)

  • AYEON, KIM;CHANGGWON, CHOE;SEUNGHYUN, CHEON;HANKWON, LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.

Quantifying Energy Consumption to the Level of Service Pressure in Water Distribution Network

  • Marlim, Malvin S.;Choi, Jeongwook;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.458-458
    • /
    • 2022
  • It is essential to reduce global carbon emissions, mainly from energy use. The water supply and distribution sector is a vital part of human society and is one of the primary energy consumers. The procurement and distribution of water require electricity to operate the pump to deliver water to users with sufficient pressure. As the water users are spatially distributed over a wide area, the energy required to deliver water to each user differs depending on the corresponding supplying element (reservoir, tank, pipe, pump, and valve). This difference in energy required for each user also comes with a difference in pressure availability which affects the level of service for individual users and the whole network. Typically, there is a disproportion where users close to the source experience excessively high pressure with low energy consumption. In contrast, remote users need more energy to get the minimum pressure. This study proposes the Energy Return Index (ERI) to quantify the pressure return from particular energy consumption to supply water to each node. The disproportionality can be quantified and identified in the network using the proposed ERI. The index can be applied to optimize the network elements such as pump operation and tank location/size to reach a balanced energy consumption with the appropriate level of service.

  • PDF

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

Designs for Self-enforcing International Environmental Coordination (원유공급 위기의 경제적 효과에 관한 연구)

  • Cho, Gyeong Lyeob;Sonn, Yang-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.16 no.1
    • /
    • pp.27-63
    • /
    • 2007
  • Using the CGE model, this paper investigates economic impacts of a shortage in crude oil resulting from voluntary export restraints, OPEC's agreement of a cut in oil production, and/or a storing on speculation. Unlike most previous studies considering oil price as the unpredictable variable, this study constructs the model to determine the oil price endogenously under the condition of an insufficient supply of crude oil. According to IEA's extraordinary steps for a shortage of crude oil, we investigate an economic impact of 7~12% shortage below the level of business as usual. The results show that oil price soars by 17.3~33.5%, the rate of economic growth falls by 0.52~0.96%p, and the consumer price index(CPI) rises by 0.8~1.51%p. These results imply that increasing in 1%p of oil price results in decreasing in 0.03%p of economic growth and increasing in 0.045%p of consumer price index. The production of electricity declines because of the increase in production cost. A shortage of crude oil has an effect on sources of electricity. Most reduction in electricity generation occurs from the reduction in the thermal power generation which is highly dependent on crude oil. The shortage of crude oil causes demand for petroleum to significantly decline but demand for coal and heat to increase because of the substitution effect with petroleum. Demand for gas rise in the first year but falls from the second year.

  • PDF

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

A Study on the Recovery of Electricity Energy by Employing Double Turbo-Expander Pressure Reduction System to the Seasonal Variation of Natural Gas Flow Rates (천연가스의 계절별 변동유량을 고려한 이중터보팽창기 감압시스템을 이용한 전기에너지회수에 관한 연구)

  • Park, Cheol-Woo;Yoo, Han Bit;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.74-81
    • /
    • 2019
  • Expansion turbine system to recover the electricity energy from natural gas transmission stations is a well-known technique. The turbo-expander efficiency depends on the ratio of the natural gas flow rates to the design flow rate of the turbo-expander. However, if there is a big difference of the natural gas flow rate through the pressure letdown station because of seasonal supply pattern, that is, high flow rate in winter while low flow rate in summer, single turbo-expander system is not so efficient as to recover the pressurized energy from the low flow-rate natural gas. Therefore, we have proposed a new concept of double turbo-expander system: one is a big capacity and the other a small capacity. Here we have theoretically computed the electric powers at the pressure reduction from 18.5 bar to 7.5 bar depending on the inlet conditions of temperature and flow rate. The calculated electricity generation has been increased by 30% from 12.4 MW in a single turbo expander to 16.1 MW in the proposed double turbo-expander system when a minimal design efficiency of 0.72 is applied.