• Title/Summary/Keyword: Electricity Supply

Search Result 649, Processing Time 0.034 seconds

Put Investigation on the energy saving method using inverter driving for cooling pump at MMU training ship (인버터 구동방식에 의한 실습선 냉각수 펌프의 에너지 절감 방법)

  • Lim, Myeong-Hwan;Ahn, Byong-Won;Kim, Bu-Gi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.880-885
    • /
    • 2009
  • The ships have a lot of electric machinery needed to supply electricity from the moment of launching coming out of dry dock to docking at jetty. Thus, the ships always have to use alternator and electric machinery that has low efficiency under the low load. Many government service ships like the MMU training ship have been spending lots of time at jetty rather than sailing at sea. These ships are operated under the condition of low load due to the operation of basic machinery at jetty and electric machineries are driven with the status of low efficiency. This paper would suggest the energy saving method for these ships. The investigation describes that shore connection is a great asset to these ships and that the flow rate control by adjusting revolution with the adoption of inverter is better than flow rate control by using throttle valve to save energy. The result is based on the investigation of cooling pump at MMU training ship.

An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System (2단 가열식 지열시스템의 경제성 분석)

  • Shin, Jeong Soo;Kim, Sean Hay
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

Analysis of Performance Characteristics of Gas Turbine-Pressurized SOFC Hybrid Systems Considering Limiting Design Factors (제한요소를 고려한 가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • Yang Won Jun;Kim Tong Seop;Kim Jae Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1013-1020
    • /
    • 2004
  • The hybrid system of gas turbine and fuel cell is expected to produce electricity more efficiently than conventional methods, especially in small power applications such as distributed generation. The solid oxide fuel cell (SOFC) is currently the most promising fuel cell for the hybrid system. To realize the conceptual advantages resulting from the hybridization of gas turbine and fuel cell, optimized construction of the whole system must be the most important. In this study, parametric design analyses for pressurized GT/SOFC systems have been peformed considering probable practical limiting design factors such as turbine inlet temperature, fuel cell operating temperature, temperature rise in the fuel cell and soon. Analyzed systems include various configurations depending on fuel reforming type and fuel supply method.

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

Prediction of Demand for Photovoltaic Power Plants for Electric Vehicle Operation (전기자동차 운행을 위한 태양광발전소 수요 예측)

  • Choi, Hoi-Kyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.35-44
    • /
    • 2020
  • Currently, various policies regarding ecofriendly vehicles are being proposed to reduce carbon emissions. In this study, the required areas for charging electric vehicle (EV) batteries using electricity produced by photovoltaic (PV) power plants were estimated. First, approximately 2.4 million battery EVs, which represented 10% of the total number of vehicles, consume approximately 404 GWh. Second, the power required for charging batteries is approximately 0.3 GW, and the site area of the PV power plant is 4.62 ㎢, which accounts for 0.005% of the national territory. Third, from the available sites of buildings based on the region, Jeju alone consumes approximately 0.2%, while the rest of the region requires approximately 0.1%. Fourth, Seoul, which has the smallest available area of mountains and farmlands, utilizes 0.34% of the site for PV power plants, while the other parts of the region use less than 0.1%. The results of this study confirmed that the area of the PV power plant site for producing battery-charging power generated through the supply of EVs is very small. Therefore, it is desirable to analyze and implement more specific plans, such as efficient land use, forest damage minimization, and safe maintenance, to expand renewable energy, including PV power.

News Focus - Today and Tomorrow of the Korea-made NPP, SMART (뉴스초점 - 한국 토종 원자로 'SMART"의 오늘과 내일)

  • Kim, Hak-Roh
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.6
    • /
    • pp.40-44
    • /
    • 2011
  • Nuclear energy in Korea began in 1958, when the Korea's atomic energy act was formulated and the relevant organizations were founded. Since then, notwithstanding the two catastrophe like TMI and Chernobyl accident, Korea made a wise decision to expand the peaceful uses of the nuclear energy as well as to localize the essential nuclear design technology of fuel and nuclear steam supply system. This decision resulted in the success of export of nuclear power plants as well as research reactor in 2010s. The Korea's nuclear policy, which well utilized 'international crisis in nuclear business' as 'opportunity of Korea to get. nuclear technology', is believed nice policy as a role model of nuclear new-comer countries. Based upon the success story of localization of nuclear technology, Korea had an eye for a niche market, which was a basis of development of SMART, Korea-made integral PWR. The operation of a SMART plant can sufficiently provide not only electricity but also fresh water for 100,000 residents. Last two years, Korea's nuclear industry team led by the Korea Atomic Energy Research Institute completed the standard design of SMART and applied to the Korea's regulatory body for standard design approval. Now the Korea's licensing authority is reviewing the design with the relevant documents, and the design team is doing its best to realize its hope to get the approval by the end of this year. From next year, the SMART business including construction and export will be explored by the KEPCO consortium.

  • PDF

Northeast Asia Interconnection, and Power Flow Analysis Considering Seasonal Load Patterns

  • Lee, Sang-Seung;Kim, Yu-Chang;Park, Jong-Keun;Lee, Seung-Hun;Osawa, Masaharu;Moon, Seung-Il;Yoon, Yong-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This paper presents the effects of an increase or a decrease of a power reserve by load flow calculations under the seasonal load patterns of each country for the future power shortages faced by the metropolitan areas or by the southeastern area of South Korea in North-East Asia. In this paper, the various cases of the power system interconnections in Far-East Asia are presented, and the resulting interconnected power systems are simulated by means of a power flow analysis performed with the PSS/E 28 version tool. Data for simulation were obtained from the 2-th long term plan of electricity supply and demand in KEPCO. The power flow map is drawn from simulated data and the comparative study is done. In the future, a power flow analysis will be considered to reflect the effects of seasonal power exchanges. And the plan of assumed scenarios will be considered with maximum or minimum power exchanges during summer or winter in North-East Asian countries.

Application of Particle Swarm Optimization to the Reliability Centered Maintenance Method for Transmission Systems

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.814-823
    • /
    • 2012
  • Electric power transmission utilities make an effort to maximize profit by reducing their electricity supply and operation costs while maintaining their reliability. The development of maintenance strategies for aged components is one of the more effective ways to achieve this goal. The reliability centered approach is a key method in providing optimal maintenance strategies. It considers the tradeoffs between the upfront maintenance costs and the potential costs incurred by reliability losses. This paper discusses the application of the Particle Swarm Optimization (PSO) technique used to find the optimal maintenance strategy for a transmission component in order to achieve the minimum total expected cost composed of Generation Cost (GC), Maintenance Cost (MC), Repair Cost (RC) and Outage Cost (OC). Three components of a transmission system are considered: overhead lines, underground cables and insulators are considered. In regards to aged and aging component, a component state model that uses a modified Markov chain is proposed. A simulation has been performed on an IEEE 9-bus system. The results from this simulation are quite encouraging, and then the proposed approach will be useful in practical maintenance scheduling.

A Study on Optimal Reliability Criterion Determination for Transmission System Expansion Planning

  • Tran Trungtinh;Choi Jae-Seok;Jeon Dong-Hoon;Chu Jin-Boo;Thomas Robert;Billinton Roy
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.62-69
    • /
    • 2005
  • The optimal design of transmission system expansion planning is an important part of the overall planning task of electric power system under competitive electricity market environments. One of main keys of the successful grid expansion planning comes from optimal reliability level/criteria decision, which should be given for constraint in the optimal expansion problem. However, it's very difficult to decide logically the optimal reliability criteria of a transmission system as well as generation system expansion planning in a society. This paper approaches a methodology for deciding the optimal reliability criteria for an optimal transmission system expansion planning. A deterministic reliability criteria, BRR (Bus Reserve Rate) is used in this study. The optimal reliability criteria, BRR/sup */, is decided at minimum cost point of total cost curve which is the sum of the utility cost associated with construction cost and the customer outage cost associated with supply interruptions for load considering bus reserve rate at load buses in long term forecasting. The characteristics and effectiveness of this methodology are illustrated by the case study using IEEE-RTS.

A Study on the Evaluation of the Long-Term Avoided Generation Cost (장기 회피 발전비용 계산에 관한 연구)

  • Kim, Jong-Ok;Park, Jong-Bae;Kim, Kwang-In;Lee, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.878-882
    • /
    • 1996
  • This paper discusses the definition and concepts, approach methodologies, capable application areas in electricity business, and tentative calculation of avoided generation costs based on the Korea's official long-term generation expansion plan. The objective to evaluate avoided costs of a resource is to supply decision makers with the breakeven cost of a targeting avoided resource. For the evaluation of avoided costs of the Korea's generation system, we consider the pseudo-DSM option which has 1,000MW peak savings, load factor with 70 percent, and life-time With 25 years as the avoided resource. The DSM resource can save the fuel and capacity additions of a electric utility during its life time. The capacity and fuel savings are evaluated from the two different cashflows with and Without the DSM option, which are generated on the basis of the generation system optimization model(WASP-II), independently. The breakeven kWh costs of the DSM option over this 25-year period is projected to be 34.1[won/kWh], which is composed of generation-capacity and fuel avoided costs with 101.139[won/kW] and 17.6[won/kWh], respectively.

  • PDF