• Title/Summary/Keyword: Electricity Supply

Search Result 650, Processing Time 0.022 seconds

A Study on the Disaster Prevention Technology of the Switchboard with Upper and Lower Bending Type Seismic Pads (상하굴절형 내진패드를 설치한 수배전반 방재기술에 관한 연구)

  • Lee, Taeshik;Seok, Gumcheul;Lee, Jaewon;Kim, Taejin;Kim, Jaekwon;Cho, Woncheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2017
  • The purpose of this study is to investigate the effect of vertical and horizontal refraction on the lower part of the power supply and control system of various facilities and machinery that use electricity, so that the power distribution system, which is an important electric facility installed in buildings and public facilities, Type earthquake resistant pads to protect the substructure and prevent short-circuiting on the upper part of the system. The GR-63-CORE (Scale 8.3 class) It is earthquake disaster prevention and disaster prevention technology that satisfies seismic performance. As a research result, it is possible to protect the electricity and communication infrastructure, which can contribute to shortening the time for recovering the electric facilities to the normal state in case of an earthquake, and preventing the fire caused by the destruction of the electricity supply facility in case of an earthquake. As a result, it is possible to minimize the spread of fire that occurs when a large-scale earthquake occurs and to minimize the damage of people and damage to property, and it can contribute to the securing of electric infrastructure that enables citizens to quickly recover to daily life even after suffering a major earthquake. In addition, the technology can be applied to ensure the seismic resistance of the equipment in the communication and computer room, and it can be applied to various fields where the facility function can be stopped due to the shaking of the earthquake base.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

A Study on the Method of Energy Evaluation in Water Supply Networks (상수관망의 에너지 평가기법에 관한 연구)

  • Kim, Seong-Won;Kim, Dohwan;Choi, Doo Yong;Kim, Juhwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.745-754
    • /
    • 2013
  • The systematic analysis and evaluation of required energy in the processes of drinking water production and supply have attracted considerable interest considering the need to overcome electricity shortage and control greenhouse gas emissions. On the basis of a review of existing research results, a practical method is developed in this study for evaluating energy in water supply networks. The proposed method can be applied to real water supply systems. A model based on the proposed method is developed by combining the hydraulic analysis results that are obtained using the EPANET2 software with a mathematical energy model on the MATLAB platform. It is suggested that performance indicators can evaluate the inherent efficiency of water supply facilities as well as their operational efficiency depending on the pipeline layout, pipe condition, and leakage level. The developed model is validated by applying it to virtual and real water supply systems. It is expected that the management of electric power demand on the peak time of water supply and the planning of an energy-efficient water supply system can be effectively achieved by the optimal management of energy by the proposed method in this study.

The DC/DC Converter having the current source applying the new switching pattern (새로운 스위치 패턴을 적용한 전류원을 갖는 DC/DC 컨버터)

  • Kim, Sun-Pil;Ko, Hyun-Swok;Kim, Se-Min;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • As the high-level of the industrial and information age, the electricity become the indispensable element in the daily life including OA, FA, and computer, electric home appliances, and etc. In particular, The continuous use of the high capacity power supply system by applying a Switching Mode Power Supply(SMPS) according to the increase of the secondary side output terminal of the power load of the refrigerator of the home appliance or automation of the plant is pressed. The purpose using the way with this kind of high-capacity altogether is to supply the output voltage and output current regardless of the input voltage or to the external environmental conditions of the secondary-side load fluctuation. In this paper, a combination of a Buck Converter with Boost Converter by making a constant current source to control the inductor current and maintain stable power supply side operating characteristics, when load variations. While maintaining the same characteristics as conventional Buck Converter, and offer a DC-DC Converter system with the new switch pattern having a wide output range capable of operating in Buck-Boost Converter. In addition, after theoretical analysis, we carry out simulations and experiments to verify the validity and performance comparing with a conventional DC-to-DC converter.

Regional Long-term/Mid-term Load Forecasting using SARIMA in South Korea (계절 ARIMA 모형을 이용한 국내 지역별 전력사용량 중장기수요예측)

  • Ahn, Byung-Hoon;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8576-8584
    • /
    • 2015
  • Load forecasting is needed to make supply and demand plan for a stable supply of electricity. It is also necessary for optimal operational plan of the power system planning. In particular, in order to ensure stable power supply, long-term load forecasting is important. And regional load forecasting is important for tightening supply stability. Regional load forecasting is known to be an essential process for the optimal state composition and maintenance of the electric power system network including transmission lines and substations to meet the load required for the area. Therefore, in this paper we propose a forecasting method using SARIMA during the 12 months (long-term/mid-term) load forecasting by 16 regions of the South Korea.

Coordinated Control Modeling and Simulation among the Voltage Compensation Equipments Using Python (Python을 이용한 전압보상설비의 상호 협조제어 모델링 및 시뮬레이션)

  • Lee, Sang-Deok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The ultrafashionable machinery that require high quality electricity power has been daily come into being. Because domestic power system has been larger and more complicated in accordance with raising power demand by power market requirement. Because of these power market situations, The FACTS (Flexible AC Transmission System) which is power transmission system for the next generation to meet flexible supply the power and reliability has been applied. If they, compensators and FACTS, are used inter-efficiently in range that does not affect the stability and a badly influence the security, they might be increase in the voltage stability of system, supply reliability and also achieve the voltage control in a suddenly changed power system. Therefore we describe and suggest on this treatise that a plan for coordination control between UPFC, Shunt elements (Sh. Capacitors & Sh. Reactors) among compensators and also describe the method to keep or control the voltage of power system in allowable ranges. The method follows that, we used characteristics of each equipment, UPFC would be also settled to keep the identified voltage range in change of load bus, Shunt elements also would be settled to supply the reactive power shortage in out of operating range of UPFC to cope actively with change of the power system. As the result of simulation, it is possible to keep the load bus voltage in limited range in spite of broad load range condition. This helps greatly for the improvements of supply reliability and voltage stability.

A Research of Optimum Supply Reserve Levels for Stability of Power System (전력계통 안전을 위한 공급예비력 적정수준에 대한 연구)

  • Ahn, Dae-Hoon;Kwon, Seok-Kee;Joo, Haeng-Ro;Choi, Eun-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.55-61
    • /
    • 2008
  • Because of the high increasing rate of load demand these days the necessity of deciding what optimum reserve level is appropriate to most stably supply electricity is being emphasized. This research studies the downward tendency of reserve ratio by analyzing the trend of change of the network scale, reserve, and reserve ratio while optimum reserve has been increased as the network system scale grow up. This means, at this moment 6,000[MW] is optimum level for short term prospect of power supply and demand. And also, it has been analyzed that, as the annual peak load exceeded 50,000[MW], confirming the amount of optimum reserve level is more stable than keeping 10 to 12[%] reserve ratio.

A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems (재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구)

  • Lee, Joon Heon;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.34-50
    • /
    • 2022
  • Since the Paris climate agreement, reducing greenhouse gases has been the most important global issue. In particular, it is necessary to reduce fossil fuels in the mobility sector, which accounts for a significant portion of total greenhouse gas emissions. In this paper, we investigated the economic feasibility of green mobility energy supply chains, which supply hydrogen as fuel to hydrogen vehicles based on electricity from renewable energy sources. The design and operation costs were analyzed by evaluating nine scenarios representing various combinatorial possibilities such as renewable energy generation, hydrogen production through water electrolytes, hydrogen storage and hydrogen refueling stations. Simulation calculations were made using Homer Pro, widely used commercial software in the field. The experience gained in this study could be further utilized to construct actual hydrogen energy systems.

Characteristics and Limitations of Green Premium in the Korean RE100 System (한국 RE100 제도에서 녹색프리미엄의 특성 및 한계)

  • Yang, Wonchang;Lee, Jae-Seung
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.43-59
    • /
    • 2022
  • The green premium is the most important feature of Korea's RE100 system. Green premium has three characteristics. The first, the cost of implementation is lower than that of other means of implementation. The second, it is linked with the RPS system to keep the means of implementing the green premium low. Third, the funds raised by the green premium are used to supply renewable energy to compensate for the additionality that the green premium does not have. When the entire industrial sector's electricity consumption is converted to renewable energy, the implementation cost of the green premium is estimated to be 3,377.4 billion won, and the REC purchase is estimated to incur the implementation cost of 6,576.4 billion won, which is 3.5 trillion more than the green premium. It was analyzed that an additional implementation cost of KRW 100 million would occur. In addition, in the case of solar PPA, it was analyzed that additional implementation costs of KRW 13,375.7 billion to KRW 16,162.3 billion were incurred. It was estimated that the renewable energy that could be supplied to the green premium would at least be sufficient for companies exporting to the US and EU. In addition, it was analyzed that when the fund created as a green premium is used for renewable energy supply, about 30.7% of the renewable energy supply through PPA can be supplied. However, as ESG is emphasized, green premium can be criticized by green washing because there is no additionality. There is also a limit to responding to the EU's CBAM. Therefore, companies can use the green premium depending on the situation, but it is more advantageous to use PPA, etc. The government needs to sufficiently maintain the supply of renewable energy using the fund to maintain the green premium.

A Study on Apparatus of Smart Wearable for Mine Detection (스마트 웨어러블 지뢰탐지 장치 연구)

  • Kim, Chi-Wook;Koo, Kyong-Wan;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.263-267
    • /
    • 2015
  • current mine detector can't division the section if it is conducted and it needs too much labor force and time. in addition to, if the user don't move the head of sensor in regular speed or move it too fast, it is hard to detect a mine exactly. according to this, to improve the problem using one direction ultrasonic wave sensing signal, that is made up of human body antenna part, main micro processor unit part, smart glasses part, body equipped LCD monitor part, wireless data transmit part, belt type power supply part, black box type camera, Security Communication headset. the user can equip this at head, body, arm, waist and leg in removable type. so it is able to detect the powder in a 360-degree on(under) the ground whether it is metal or nonmetal and it can express the 2D or 3D film about distance, form and material of the mine. so the battle combats can avoid the mine and move fast. also, through the portable battery and twin self power supply system of the power supply part, combat troops can fight without extra recharge and we can monitoring the battle situation of distant place at the command center server on real-time. and then, it makes able to sharing the information of battle among battle combats one on one. as a result, the purpose of this study is researching a smart wearable mine detector which can establish a smart battle system as if the commander is in the site of the battle.