• Title/Summary/Keyword: Electricity Polymer

Search Result 58, Processing Time 0.023 seconds

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

A Study on the Voltage Upgrading of Transmission Lines using Polymer Insulation Arm (폴리머 절연암을 이용한 송전선로 전압 승압에 관한 연구)

  • Lee, Won-Kyo;Lee, Jung-Won;Kang, Yeon-Woog;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.870-878
    • /
    • 2009
  • The large increase in the use of electricity has resulted in an ever-growing electric power demand. It has created the need for the construction of power transmission facility located close to the load centers and it also has to require wide right-of-way and large lots, that are not always available, for especially the installation of the towers. The difficulties in acquiring right-of-way have put pressure on energy companies to either upgrade a line on an existing right-of-way to higher voltage or build a new line on a narrow right-of-way. This paper presents the design of a compact tower with polymer Insulation arm, in order to reduce the separation between phases. the compact tower can be built on a narrow right-of-way. the compact tower can be designed based on 345 kV Tower regarding electrical clearances and right of way, therefore the conventional 154 kV Tower can be upgrading transmission line voltages have moved to 345 kV levels.

Current Patents and Papers Research Trend of Fuel Cell Membrane (특허 및 논문 게재 분석을 통한 연료전지용 전해질막의 연구동향)

  • Woo, Chang Hwa
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.407-420
    • /
    • 2016
  • The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The key technology is the manufacturing process of polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) system. The Nafion, perfluoro-based polymeric membrane is mainly used as a polymer electrolyte membrane. However, the Nafion is expensive and rapidly decreases the performance of Nafion at high temperature. So, many researchers are lively studying new alternative electrolyte membranes. In this review, through the technology competitiveness evaluation of patents and papers, the frequencies of presentation are filed by country, institution and company. In addition, polymer electrolyte membrane fuel cell, direct methanol fuel cell and alkaline fuel cell are also filed.

A Study on the Strategy of Smart Charging System to Charge the PHEV in the House Which has a 1 kW Fuel Cell Cogeneration System (1 kW 급 가정용 연료전지 코제너레이션 시스템이 설치된 주택 내 플러그인 하이브리드 자동차의 스마트 충전전략 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.838-843
    • /
    • 2008
  • Cause of struggling to escape from dependency of fossil fuels, the fuel cell and the Plug-in Hybrid Electric Vehicle (PHEV) draw attention in the all of the world. Especially, the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems have been anticipated for next generation's energy supplying system, and we can predict the PHEV will enlarge the market share in the next few years to reduce not only the air pollution in the metropolis but the fuel-expenses of commuters. This paper presents simulation results about the strategy of smart charging system for PHEV in the residential house which has 1 kW PEMFC cogeneration system. The smart charging system has a function of recommending the best time to charge the battery of PHEV by the lowest energy cost. The simulated energy cost for charging the battery based on the electricity demand data pattern in the house. The house which floor area is $132\;m^2$ (40 pyeong.). In these conditions, the annual gasoline, electricity, and total energy cost to fuel the PHEV versus Conventional Vehicle (CV) have been simulated in terms of cars' average life span in Korea.

  • PDF

Experimental Study on the Preferential Oxidation Reactor Performance Using a Water Cooling Heat Removal for Polymer Electrolyte Membrane Fuel Cell (수냉식 방열을 이용한 연료전지용 PROX 반응기의 성능에 관한 실험적 연구)

  • KIM, JINSAN;JO, TAEHYUN;KOO, BONCHAN;LEE, DOHYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.503-509
    • /
    • 2016
  • Fuel cell is a device for producing electricity by using the hydrogen produced by the fuel processor. At this time, CO is also created by the fuel processor. The resulting CO enters the stack where is produce electricity and leads to the adsorption of anode catalyst, finally the CO poisoning occurs. Stack which occurred CO poisoning has a reduction in performance and shelf life are gradually fall because they do not respond to hydrogen. In this paper, experiments that using a PROX reactor to prevent CO poisoning were carried out for removing the CO concentration to less than 10ppm range available in the fuel cell. Furthermore experiments by the PROX reaction was designed and manufactured with a water-cooling heat exchange reactor to maintain a suitable temperature control due to the strong exothermic reaction.

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell (다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과)

  • Park, So Hyun;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.470-477
    • /
    • 2013
  • Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.

A Study on Performance of Polymer Electrolyte Membrane Fuel Cell Using Metal Foam (Metal foam을 사용한 고분자 전해질 연료전지 성능 연구)

  • KIM, MYO-EUN;KIM, CHANG-SOO;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.554-559
    • /
    • 2015
  • Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a $25cm^2$ single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams. In addition, single cell with metal foam shows potential to higher performance than conventional channel.

PEMFC Based Cogeneration System Using Heat Pump (히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템)

  • BUI, TUANANH;KIM, YOUNG SANG;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

The Photovoltaic LED Lighting System applying Lithium Polymer Batteries (리튬 폴리머 전지를 이용한 태양광 LED 조명시스템)

  • Ahn, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • The research on solar energy that we get from nature to cope with energy exhaustion is a very significant and inevitable task for us to do. Along with this, lately, in Korea, as part of new growth engine industry regarding low-carbon green growth, we have selected the LED(Light Emitting Diode) as low power consuming, eco-friendly lighting equipment and have been facilitating research and development on it and creating a variety of new industries utilizing it. What was developed here in this research was the photovoltaic LED lighting system applying lithium polymer batteries equipped with the excellent performance of lithium ion batteries as well as significantly low explosive hazard. Its photovoltaic panel was made to have 100W capacity, and for its power supply system, functional convenience was considered so that it could be equipped with both DC and AC power to be used as household electricity in a variety of ways.