• Title/Summary/Keyword: Electricity Management

Search Result 609, Processing Time 0.026 seconds

A Study on Environmental Impact and Cost Analysis in Electricity Generation Using MFCA For a Coal-fired Power Plant (MFCA를 적용한 환경부하 및 발전원가 분석 연구 : 석탄화력발전소 중심으로)

  • Lim, Byung-Sun;Park, Seungwook
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Global warming has pressured companies to put a greater emphasis on environment management which allows them to reduce environmental impact and costs of their operations. In Korea, the coal-fired power plants take a large account of electricity generation at 31.7% of the total electricity usage in 2014. Thus, environmental impact of coal-fired power plants is significant. This paper illustrated how to compute environmental impact and costs in electricity generation at a coal-fired power plant using MFCA methodology. Compared to the traditional accounting, an advantage of MFCA is to provide information on electricity generation costs and environmental wastes incurring throughout the production process of electricity. Based on MFCA, the coal-fired power plant was able to reduce production cost of electricity by 52.3%, and environmental wastes by 47.7%. As a result, MFCA seemed to be an effective tool in environmental management for power plants.

A Study on Load Control Method for Home Energy Management System (H-EMS) Considering the Human Comfort (주거자 만족도를 고려한 주택 에너지관리 시스템의 부하제어 방법 연구)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1025-1032
    • /
    • 2014
  • The effective energy management method will provide the significant advantage to the residential customers under real time pricing plan since it can reduce the electricity charge by controlling the energy consumption according to electricity rate. The earlier studies for load management mainly aim to minimize the electricity charges and peak power but put a less emphasis on the human comfort dwelling in the residence. The discomfort and displeasure from the energy management only focusing on reduction of electricity charge will make the residential customer reluctant to enroll the real time pricing plan. In this paper, therefore, we propose optimal load control strategy which aim to achieve not only minimizing the electricity charges but also maintaining human comfort by introducing "the human comfort coefficient." Using the human comfort coefficient, the energy management system can reflect the various human personality and control the loads within the range that the human comfort is maintained. Simulation results show that proposed load control strategy leads to significant reduction in the electricity charges and peak power in comparison with the conventional load management method.

Collection and Analysis of Electricity Consumption Data in POSTECH Campus (포스텍 캠퍼스의 전력 사용 데이터 수집 및 분석)

  • Ryu, Do-Hyeon;Kim, Kwang-Jae;Ko, YoungMyoung;Kim, Young-Jin;Song, Minseok
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.617-634
    • /
    • 2022
  • Purpose: This paper introduces Pohang University of Science Technology (POSTECH) advanced metering infrastructure (AMI) and Open Innovation Big Data Center (OIBC) platform and analysis results of electricity consumption data collected via the AMI in POSTECH campus. Methods: We installed 248 sensors in seven buildings at POSTECH for the AMI and collected electricity consumption data from the buildings. To identify the amounts and trends of electricity consumption of the seven buildings, electricity consumption data collected from March to June 2019 were analyzed. In addition, this study compared the differences between the amounts and trends of electricity consumption of the seven buildings before and after the COVID-19 outbreak by using electricity consumption data collected from March to June 2019 and 2020. Results: Users can monitor, visualize, and download electricity consumption data collected via the AMI on the OIBC platform. The analysis results show that the seven buildings consume different amounts of electricity and have different consumption trends. In addition, the amounts of most buildings were significantly reduced after the COVID-19 outbreak. Conclusion: POSTECH AMI and OIBC platform can be a good reference for other universities that prepare their own microgrid. The analysis results provides a proof that POSTECH needs to establish customized strategies on reducing electricity for each building. Such results would be useful for energy-efficient operation and preparation of unusual energy consumptions due to unexpected situations like the COVID-19 pandemic.

Development of a Daily Electricity Business Index by using the Electricity Daily Data of the Manufacturing Sector (제조업 일별 전력 사용량을 활용한 일일전력경기지수(DEBI) 개발)

  • Oh, Seunghwan;Park, Sungkeun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.59-74
    • /
    • 2016
  • Electricity sales are directly measured from individual consumers, which could minimize the time gap between data collection and public announcement. Furthermore, industrial electricity sales are highly linked with production and output. Therefore, industrial electricity consumption can be used to track production and output in real time. By using the high-frequency data of industrial electricity sales, this study develops the daily electricity business index (DEBI) to capture the daily economic status. The steps used to formulate DEBI are as follows: (1)selection of the explanatory variables and period, (2) amendment of the seasonal adjustment to eliminate daily temperature and effective day effects, (3) estimation of the weighted value via variables by using PCA, (4) calculation of DEBI and commencement of validation tests. Our empirical analysis and the Hodrick-Prescott filter analysis show that DEBI is highly related to existing economic indices.

A Study on Development of Small Scale Electric Power Management System for Smart Grid (스마트 그리드를 위한 소규모 전력에너지 관리 시스템 개발에 관한 연구)

  • Lee, Chang-Soo;Oh, Hea-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2826-2832
    • /
    • 2012
  • A smart grid is an electric-power grid that employs a new information technology.This technology makes it possible to exchange real-time energy information between suppliers and consumers, finally resulting in high energy efficiency. The energy management system in smart grid provides up to date information on electricity consumption as well as dynamic electricity price to consumers of smart grid system. However, the existing energy management systems only focus on pricing system, for example, real-time electricity prices. In this paper, we try to improve the existing energy management system and propose the energy management system that mainly focuses on the efficiency of electricity consumption. In the proposed management system, PMU(Phasor Measurement Units) installed in switchboards gathers electricity data in a real time. We also propose to use data mining method, which is applied to analyzed electricity data for improving energy efficiency. Also, the proposed energy management system is designed to efficiently control the electricity between PMU and management system in case of a shortage of electricity or surplus electricity.

Implementation of Electricity Power Management System for Industries based on USN (USN 기반의 산업용 전력관리시스템 구현)

  • Kim, Min-Ho;Lee, Nam-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • In this paper, We suggest electricity power management system which makes a good efficient and minimize wasteness of electricity power. We made electricity power management system based USN(Ubiquitous Sensor Network) for industries, factories, public offices and so on, with optimized system. Simply, we can measure and control electricity power as we plug it outlets. This system can monitor and control electricity power, organizing network of PLC(Power Line Communication) and TCP/IP with the sensor for electricity power. Through the acquisition data, this proposed system can manage and save the electricity power efficiently and also we can connect this system to server, anytime, anywhere with Android phone.

Analysis of the Economic Impact of the Change in Congestion Management in the Korean Electricity Market (송전 혼잡처리방법 변경이 시장 참여자 수익에 미치는 영향 분석)

  • Joo, Sung-Kwan;Kim, Ji-Hui;Moon, Guk-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.134-140
    • /
    • 2008
  • A switch in congestion management nile in an electricity market may have positive or negative impact on the surplus of a market participant. As a number of wholesale electricity markets around the world either have already adopted or plan to implement Locational Marginal Pricing (LMP) for energy and congestion management, it is necessary to study the economic impact of a change in congestion management in the Korean electricity market. However, the impact of congestion management on consumer costs and generator surplus has not been studied for the electricity market in Korea. This paper examines how a change in congestion management affects consumer costs and generator surplus in the Korean electricity market.

A Comparative Study on the Railway Electricity Maintenance Management (전철전력분야의 유지보수현황 및 점검주기)

  • Park, Hyun-June;Park, Young;Jung, Ho-Sung;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1202-1207
    • /
    • 2011
  • This article introduces the benchmarking methodologies, the results of comparative analysis on the railway electricity maintenance management - preventive maintenance, corrective maintenance, upgrade maintenance. This article also compares the Korean railway electricity maintenance management with the results mentioned above and analyses the situations of each country - France, Germany, Japan. Lastly this article tries to find the comparative position of the Korean railway infrastructure costs and discusses the direction of cost reduction in railway electricity maintenance management.

  • PDF

The effect of DSM(Demand-Side Management) in competitive electricity market (DSM(Demand-Side Management)이 경쟁적인 전력시장에 미치는 영향)

  • Kim, Moon-Young;Baek, Young-Sik;Kim, Jung-Hoon;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.388-390
    • /
    • 2000
  • The production of electricity and the pattern of consumption in competitive electricity market are changing. The price of electric power in spot market will be varied by the economic electricity availability of generation utilities and electricity consumers. DSM(demand-side management) is a method which provides simultaneously economics to utilities and consumers as main participants in electricity market. In this paper, it is argued that the effect of DSM in competitive electricity market for consumers, generation utilities, and transmission utilities.

  • PDF

The Pricing of Electricity through the ESPM (ESPM을 이용한 전력가격의 결정)

  • 이석규;변영덕
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.11-27
    • /
    • 2002
  • This paper is aimed at surveying the method that supports logical and theoretical back grounds of electricity service pricing, to investigate whether the ESPM can reflect comprehensively the various interests of parties and persons concerned with electricity supply and demand, and analyzing the practical applicability of the model in short-term perspectives. The major findings of this study can be summarized as fellows. First, the ESPM explains what process the equilibrium price is attained through, which is the essential concept and object in evaluating the value of public enterprises or utilities and the price of electricity Second, the ESPM provides the logics and methods that can objectify the discrete price by each electricity user. Third, the ESPM presents theoretical logics and practical methods that can calculate the basic price and the variable price per electricity unit which are key concepts in the two-part tariff. Fourth, the ESPM has powerful practical applicabilities in the reasonable electricity pricing and in the explanation for the balance between parties and persons interested with electricity supply and demand.