• Title/Summary/Keyword: Electricity Line

Search Result 216, Processing Time 0.025 seconds

Prediction of Energy Production of China Donghai Bridge Wind Farm Using MERRA Reanalysis Data (MERRA 재해석 데이터를 이용한 중국 동하이대교 풍력단지 에너지발전량 예측)

  • Gao, Yue;Kim, Byoung-su;Lee, Joong-Hyeok;Paek, Insu;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • The MERRA reanalysis data provided online by NASA was applied to predict the monthly energy productions of Donghai Bridge Offshore wind farms in China. WindPRO and WindSim that are commercial software for wind farm design and energy prediction were used. For topography and roughness map, the contour line data from SRTM combined with roughness information were made and used. Predictions were made for 11 months from July, 2010 to May, 2011, and the results were compared with the actual electricity energy production presented in the CDM(Clean Development Mechanism)monitoring report of the wind farm. The results from the prediction programs were close to the actual electricity energy productions and the errors were within 4%.

Structural performance of an electricity tower under extreme loading using the applied element method- A case study

  • Chin, Jason Ah;Garcia, Mauricio;Cote, Jeffrey;Mulcahy, Ellen;Clarke, Jonathan;Elshaer, Ahmed
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.313-319
    • /
    • 2022
  • The resiliency of electricity transmission and distribution lines towards natural and man-made hazards is critical to the operation of cities and businesses. The extension of these lines throughout the country increases their risk of extreme loading conditions. This paper investigates a unique extreme loading condition of a 100-year old distribution line segment that passes across a river and got entangled with a boom of a ship. The study adopts the Applied Elements Method (AEM) for simulating 54 cases of the highly deformable structural behaviour of the tower. The most significant effects on the tower's structural integrity were found to occur when applying the load with components in all three of the cartesian directions (i.e., X, Y and Z) with the full capacities of the four cables. The studied extreme loading condition was determined to be within the tower's structural capacity, attributed to the shear failure of the anchor bolts, which acted as a sacrificing element that fails to protect the transfer of tensioning load to the supporting tower.

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J.;Na, S.;Jang, J.G.;Kim, H.K.;Lee, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.519-536
    • /
    • 2015
  • On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.

Development of DC Leakage Current Sensor for Solar Power Generation System (태양광발전시스템용 직류 누설전류 센서 개발)

  • Kim, Hee-Sun;Hahn, Song-Yop;Han, Hoo-Sek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.828-833
    • /
    • 2014
  • Grid connected transformerless solar power generation system is frequently used with the benefits of cost and efficiency. However, significant DC leakage current can flow from the DC line into the ground with dielectric breakdown in the transformerless solar power generation system. The leakage current occurred in the DC line causes accidents such as fire and electric shock on human. To resolve this problem, high sensitivity DC leakage current sensor is needed. But recently the studies on safety of DC line are not performed. In this paper, a high sensitivity DC leakage current sensor that can detect DC leakage current in solar power generation system, is proposed. Based on the studies, DC leakage current sensor is fabricated and characteristic tests are carried out. Finally, the accuracy of sensor performance is verified by leakage current experiments in solar power generation system.

The Best Line Choice for Transmission System Expansion Planning on the Side of the Highest Reliability Level

  • Sungrok Kang;Trungtinh Tran;Park, Jaeseok;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.84-90
    • /
    • 2004
  • This paper presents a new method for choosing the best line for transmission system expansion planning considering the highest reliability level of the transmission system. Conventional methodologies for transmission system expansion planning have been mainly focused on economics, which is the minimization of construction costs. However, quantitative evaluation of transmission system reliability is important because successful operation and planning of an electric power system under the deregulated electricity market depends on transmission system reliability management. Therefore, it is expected that the development of methodology for choosing the best lines considering the highest transmission system reliability level while taking into account uncertainties of transmission system equipment is useful for the future. The characteristics and effectiveness of the proposed methodology are illustrated by the case study using a MRBTS.

Analysis of Overhead Rigid Conductor Line for the Subway tunnel section (지하철 터널 구간 강체가선 방식의 특성분석)

  • Yim Geum-Kwang;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.493-499
    • /
    • 2003
  • Railroad, a superior mode of public transportation provides safe, efficient, speedy, comfortable and economical service, has fundamentally different characteristics from airplanes, ships and cars. Among the unique characteristics of a railroad is the fact that it operates on fixed track with multiple car trains. The subway system was first selected as the best solution to difficult automobile traffic conditions and environmental problems. Seoul subway no.1line (Jongno line) was opened for service on August 15, 1974. Seoul city has completed and now operates eight subway lines (286.7km) since 1974. At present the subways operate in Busan, Daegu and Incheon city, and are under construction in Gwangju and Daejeon city. The power source for subway trains has been electricity since 1896, and power supply systems are the third rail type and/or the catenary system. The typical catenary system is the rigid bar type. R-bar and T-bar are used in the rigid bar type of catenary system, and the two types of R-bar and T-bar are uesd in Korea also. R-bar is used only for AC 25kV power supply and T-bar for DC 1,500V. From 30 years of subway experience I would like to suggest the most economic catenary system to ensure of safety, reliability and expediency for the railway lines to be constructed and the forthcoming replacement due to the life cycle after studying and analysing the characteristics, advantages and disadvantages of R-bar and T-bar.

  • PDF

Implement of Watt-Hour Meter Monitoring System by Internet Map Based GUI using Power Line Communication (전력선 통신을 이용한 인터넷 맵 연동 전자계량기 모니터링 시스템 구현)

  • Park, Keun-Soo;Lee, Young-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1435-1441
    • /
    • 2013
  • This paper deals a watt-hour meter monitor system applying a Power Line Communication (PLC) MODEM and a Data Concentrator Unit (DCU) which can apply to Internet map based Graphical User Interface (GUI). The PLC MODEM is profitable by saving the cost of installing dedicated wiring, and Internet map GUI also is able to contribute an easy access to monitoring system for non export users. This system makes it possible to monitor the amount of electricity of previous/ current month metering data via Internet mapping service. The implement system can easily apply a PC-management for the electric charges and maintenance with gathering the metering data.

A Study on Degradation Pattern of GIS Using Clustering Methode (군집화 기법을 이용한 GIS 열화 패턴 연구)

  • Lee, Deok Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.255-260
    • /
    • 2018
  • In recent years, increasing electricity use has led to considerable interest in green energy. In order to effectively supply, cut off, and operate an electric power system, many electric power facilities such as gas insulation switch (GIS), cable, and large substation facilities with higher densities are being developed to meet demand. However, because of the increased use of aging electric power facilities, safety problems are emerging. Electromagnetic wave and leakage current detection are mainly used as sensing methods to detect live-line partial discharges. Although electromagnetic sensors are excellent at providing an initial diagnosis and very reliable, it is difficult to precisely determine the fault point, while leakage current sensors require a connection to the ground line and are very vulnerable to line noise. The partial discharge characteristic in particular is accompanied by statistical irregularity, and it has been reported that proper statistical processing of data is very important. Therefore, in this paper, we present the results of analyzing ${\Phi}-q-n$ cluster distributions of partial discharge characteristics by using K-means clustering to develop an expert partial discharge diagnosis system generated in a GIS facility.

A Study on the Voltage Upgrading of Transmission Lines using Polymer Insulation Arm (폴리머 절연암을 이용한 송전선로 전압 승압에 관한 연구)

  • Lee, Won-Kyo;Lee, Jung-Won;Kang, Yeon-Woog;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.870-878
    • /
    • 2009
  • The large increase in the use of electricity has resulted in an ever-growing electric power demand. It has created the need for the construction of power transmission facility located close to the load centers and it also has to require wide right-of-way and large lots, that are not always available, for especially the installation of the towers. The difficulties in acquiring right-of-way have put pressure on energy companies to either upgrade a line on an existing right-of-way to higher voltage or build a new line on a narrow right-of-way. This paper presents the design of a compact tower with polymer Insulation arm, in order to reduce the separation between phases. the compact tower can be built on a narrow right-of-way. the compact tower can be designed based on 345 kV Tower regarding electrical clearances and right of way, therefore the conventional 154 kV Tower can be upgrading transmission line voltages have moved to 345 kV levels.

A Study on History of Rolling Stock Door Engines of Seoul Metro Line No.3 and No.4 (3,4호선 도시철도 전동차 도어엔진의 개발 역사에 관한연구)

  • Jang, Sung-Chul;Lee, Chan-Hee;Jeon, Kwan-Soo;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1352-1359
    • /
    • 2010
  • It is said that the number of people using public transportation has risen about 220 thousand over 3 years which was 1019 people average a day in 2006 and 1041 people last year. It is also said that the number of people using subway has increased by 198 thousand and the number of people using bus by 22 thousand. Can you imagine how many door engines work at the same time if we count Metro line no.1 to no.4 which consist of total 120 subway stations? A train has 80 door engines and Metro line trains have 9600 door engines all together. Which explains it quite simple how much Satefy, Durability and Sustainability need to be focused in Door Engines. Although it's not the whole part of door engines in Seoul Metro Line, And Metro No.4's door engines are operated by the method called mixture of mechanical type and belt type. And the last one is being used in the brand-new Metro train line No.3 which is being operated by electricity motor, instead of the old methods which use air pressure to operate a door engine. I'm sure you will agree that Safety is the first priority of Metro train and next follow comfortability and quickness. I think all I've talked so far make it the first step for the Safety of Metro train for you to understand the unit of a Door Engine.

  • PDF