• Title/Summary/Keyword: Electricity Line

Search Result 216, Processing Time 0.023 seconds

Optimal DG Placement in a Smart Distribution Grid Considering Economic Aspects

  • Buaklee, Wirote;Hongesombut, Komsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1240-1247
    • /
    • 2014
  • The applications of Distributed Generation (DG) in a smart distribution grid environment are widely employed especially for power balancing and supporting demand responses. Using these applications can have both positive and negative impacts on the distribution system. The sizing and location of their installations are the issues that should be taken into consideration to gain the maximum benefit from them when considering the economic aspects. This paper presents an application of the Bat Algorithm (BA) for the optimal sizing and siting of DG in a smart distribution power system in order to maximize the Benefit to Cost Ratio (BCR), subjected to system constraints including real and reactive power generation, line and transformer loading, voltage profile, energy losses, fault level as well as DG operating limits. To demonstrate the effectiveness of the proposed methodology and the impact of considering economic issues on DG placement, a simplify 9-bus radial distribution system of the Provincial Electricity Authority of Thailand (PEA) is selected for the computer simulation to explore the benefit of the optimal DG placement and the performance of the proposed approach.

Optimal Division Model Configuration Plan According to 6 Divisions 3 Ties in Korea Distribution System (국내 배전계통의 6분할 3연계 최적분할 모델 구성방안)

  • Lee, Dae-Dong;Son, Sung-Hwan;Ha, Bok-Nam;Hyun, Dong-Seok;Kim, Young-Dal
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.428-433
    • /
    • 2010
  • According as economy grows, demand for power increases and satisfaction of customer about electricity quality is rising. There is in trend that investment expense by continuously increased supply of electric power equipment is on the increase continuously, but management efficiency improvement through curtailment of supply of electric power equipment investment expense through efficient operation is required rather than to increase investment. In this study, reconsidered about 6 divisions 3 ties that is distribution line basis configuration of Daejeon Geumsan area and analyzed division and tie present condition of truthful distribution System. Examined problem analyzing average division number, tie number and tie switch number, searched about most suitable division that consider load. Hereafter, I wish to take advantage of analysis result in most suitable division and tie of truthful distribution system for power failure section reduction and investment expense curtailment.

Installing Ozone Bleaching and Hot Acid Treatment at NPI Mills

  • Uno, Shunichiro;limori, Takeshi
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.325-329
    • /
    • 2006
  • Nippon Paper Industries, Co., Ltd. declared conversion of all the bleaching process to ECF, and most of the production had converted by now. To reduce ECF bleaching cost, we found that depending on electricity supply condition of the mill, utilization of ozone bleaching could be very effective. In addition, hot acid treatment of unbleached pulp also seemed to be effective for hardwood. In this study, several conditions for each technology were examined with the pulps from our own mills to reduce bleaching cost and to keep fiber quality acceptable level. In hot acid treatment study, with mild conditions (temperature lower than $90^{\circ}C$), sufficient reduction in Kappa number and hexenuronic acids content of the pulp were observed, while pulp viscosity was maintained. Moreover, to maintain strength of bleached pulp that subjected both to ozone bleaching and hot acid treatment, recommended Kappa number after ozone bleaching was more than 3. Based on these findings, two of our mills had installed medium-consistency ozone bleaching facilities and three mills installed hot acid treatment. Especially in Yatsushiro mill, both were installed in one bleaching line (A-ZD-E/P-D sequence), and running successfully.

  • PDF

Correlation Analysis between Fatigue and Performance Shaping Factor for Alternation Worker's (Focused on the Semiconductor industry) (교대근무자의 피로와 수행영향인자 간의 상관관계 분석 (반도체 산업을 중심으로))

  • Yoon, Yong-Gu;Park, Peom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.303-316
    • /
    • 2008
  • For the past 25 years, Korean semiconductor has experienced enormous growth to be the highest production country in the world. Semiconductor industry is very time sensitive and driven by technology and process, and requires 24-hour full operation. The environment includes many different types of equipment, utilities, different gases and toxic chemicals as well as high voltage electricity. We have performed a survey with 3-shift engineers and workers in one line. The content of the questionnaire was about the correlation between fatigue and performance shaping factor (work type and work ability), and as a result we were able to deduce the correlation, p-value and the pattern of scatter plot. The shape of the model was made of 4 blocks for fatigue, 5 blocks for work type and 5 blocks for work ability, i. e. 14 blocks in total. As a conclusion to this findings, there was a correlation between fatigue and work type and work ability specifically in semiconductor industry, and we need some effort to reduce this.

  • PDF

The Singular Economy: End of the Digital/Physical Divide

  • Meceda, Ann M.;Vonortas, Nicholas S.
    • STI Policy Review
    • /
    • v.9 no.1
    • /
    • pp.133-157
    • /
    • 2018
  • The divide between the "digital" economy and the traditional "physical" economy is outdated. In fact, we are in a transition to a singular economy. This paper classifies economic objects (including actors) as either physical or virtual and argues that due to emerging technologies, these objects are interacting with each other in both physical and increasingly digital spheres in tandem. This paper recognizes the elemental difference between atoms and bytes but argues that physical and digital economic activities are becoming inseparably intertwined. Furthermore, arbitrarily dividing the economy into two categories - one "physical" and the other "digital" - distorts the overall view of the actual execution of economic activity. A wide range of innovations emerging concurrently is fueling the transition to a singular economy. Often referred to as the elements of the Fourth Industrial Revolution (4IR), four emerging technological areas are reviewed here: distributed ledger technology, artificial intelligence/machine learning/data sciences, biometrics and remote sensor technologies, and access infrastructure (universal internet access/electricity/cloud computing). The financial services sector is presented as a case study for the potential impact of these 4IR technologies and the blurring physical/digital line. To reach the potential of these innovations and a truly singular economy, it requires the concurrent development of social, organizational, and regulatory innovations, though they lag in terms of technological progress thus far.

Study of Pore Development Model in Low Rank Solid Fuel Using FERPM (FERPM을 적용한 저등급 고체연료의 기공발달 모델 특성 연구)

  • PARK, KYUNG-WON;KIM, GYEONG-MIN;JEON, CHUNG-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Due to the increasing demand of high rank coal, the use of low rank coal, which has economically advantage, is rising in various industries using carbonaceous solid fuels. In addition, the severe disaster of global warming caused by greenhouse gas emissions is becoming more serious. The Republic of Korea set a goal to reduce greenhouse gas emissions by supporting the use of biomass from the Paris International Climate Change Conference and the 8th Basic Plan for Electricity Supply and Demand. In line with these worldwide trends, this paper focuses on investigating the combustibility of high rank coal Carboone, low rank coal Adaro from Indonesia, Baganuur from Mongolia and, In biomass, wood pellet and herbaceous type Kenaf were simulated as kinetic reactivity model. The accuracy of the pore development model were compared with experimental result and analyzed using carbon conversion and tau with grain model, random pore model, and flexibility-enhanced random pore model. In row lank coal and biomass, FERPM is well-matched kinetic model than GM and RPM to using numerical simulations.

Deep Learning-Based Smart Meter Wattage Prediction Analysis Platform

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.173-178
    • /
    • 2020
  • As the fourth industrial revolution, in which people, objects, and information are connected as one, various fields such as smart energy, smart cities, artificial intelligence, the Internet of Things, unmanned cars, and robot industries are becoming the mainstream, drawing attention to big data. Among them, Smart Grid is a technology that maximizes energy efficiency by converging information and communication technologies into the power grid to establish a smart grid that can know electricity usage, supply volume, and power line conditions. Smart meters are equient that monitors and communicates power usage. We start with the goal of building a virtual smart grid and constructing a virtual environment in which real-time data is generated to accommodate large volumes of data that are small in capacity but regularly generated. A major role is given in creating a software/hardware architecture deployment environment suitable for the system for test operations. It is necessary to identify the advantages and disadvantages of the software according to the characteristics of the collected data and select sub-projects suitable for the purpose. The collected data was collected/loaded/processed/analyzed by the Hadoop ecosystem-based big data platform, and used to predict power demand through deep learning.

Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea (한국의 호주 청정 수소 수입을 위한 공급망의 경제성 및 환경영향 평가)

  • AYEON, KIM;CHANGGWON, CHOE;SEUNGHYUN, CHEON;HANKWON, LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.

Study on the Air Insulation Design Guideline for ±500 kV Double Bipole Transmission Line with Metallic Return Conductor (도체귀로형 ±500 kV Double Bipole 송전선로 공기절연에 관한 연구)

  • Shin, Kooyong;Kwon, Gumin;Song, Seongwhan;Woo, Jungwook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • Recently, the biggest issue in the electricity industry is the increase in renewable energy, and various technologies are being developed to ensure the capacity of the power system. In addition, super-grids linking power systems are being pushed to utilize eco-friendly energy between countries and regions worldwide. The HVDC transmission technology is required to link the power network between regions with different characteristics of the power system such as frequency and voltage. Until now, Korea has applied HVDC transmission technology that connects mainland and Jeju Island with submarine cables. But, the HVDC transmission technology is still developing for long-distance high-capacity power transmission from power parks on the east coast to load-tight areas near the metropolitan area. Considering the high population density and mountainous domestic environment, it is pushing for commercialization of the design technology of the ${\pm}500kV$ Double Bipole with metallic return wire transmission line to transmit large-scale power of 8 GW using minimal right of ways. In this paper, the insulation characteristics were studied for the design of double-bipole transmission tower with metallic return wire, which is the first time in the world. And the air insulation characteristics resistant to the various overvoltage phenomena occurring on transmission lines were verified through a full-scale impulse voltage test.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.