• 제목/요약/키워드: Electricity Line

검색결과 216건 처리시간 0.023초

Analysis of a Harmonics Neutralized 48-Pulse STATCOM with GTO Based Voltage Source Converters

  • Singh, Bhim;Saha, Radheshyam
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.391-400
    • /
    • 2008
  • Multi-pulse topology of converters using elementary six-pulse GTO - VSC (gate turn off based voltage source converter) operated under fundamental frequency switching (FFS) control is widely adopted in high power rating static synchronous compensators (STATCOM). Practically, a 48-pulse ($6{\times}8$ pulse) configuration is used with the phase angle control algorithm employing proportional and integral (PI) control methodology. These kinds of controllers, for example the ${\pm}80MVAR$ compensator at Inuyama switching station, KEPCO, Japan, employs two stages of magnetics viz. intermediate transformers (as many as VSCs) and a main coupling transformer to minimize harmonics distortion in the line and to achieve a desired operational efficiency. The magnetic circuit needs altogether nine transformers of which eight are phase shifting transformers (PST) used in the intermediate stage, each rating equal to or more than one eighth of the compensator rating, and the other one is the main coupling transformer having a power rating equal to that of the compensator. In this paper, a two-level 48-pulse ${\pm}100MVAR$ STATCOM is proposed where eight, six-pulse GTO-VSC are employed and magnetics is simplified to single-stage using four transformers of which three are PSTs and the other is a normal transformer. Thus, it reduces the magnetics to half of the value needed in the commercially available compensator. By adopting the simple PI-controllers, the model is simulated in a MATLAB environment by SimPowerSystems toolbox for voltage regulation in the transmission system. The simulation results show that the THD levels in line voltage and current are well below the limiting values specified in the IEEE Std 519-1992 for harmonic control in electrical power systems. The controller performance is observed reasonably well during capacitive and inductive modes of operation.

230KV 2회선승 111M 높이 철탑설계 (I) (강폭 12km인 Bangladesh Jamana강 횡단용) (The design of 111m high steel towers with 220kv double circuits crossing 12 km wide Bangladesh River)

  • 이재숙
    • 기술사
    • /
    • 제15권4호
    • /
    • pp.12-24
    • /
    • 1982
  • East Parts of Bangladesh have been benifited by low cost energy generated by domestic natural gas but West parts where energy generated by imported fuel. Bangladesh Government authority has very much concerned to transmit the low cost electricity to the West from the East for past several years. To solve such concerns, cross-country 230kv double circuits Power transmission line was proposed, however there was a big obstacle for the realization of this line to cross the Jamuna river which has 12 km long width with a deep muddy river bed. A consultant engineering firm named Merz-Mclellan anyway finalized this plan and a world-wide bid was announced on June 31, 1979. Due to the expected difficulty to construct the towers on sea like area, only three construction groups have participated. including a Korean joint venture organization of Samsung-Korean Developement corporation-Kolon Electric Machinery company. After 3 months bid evaluation, contract was awarded to Korean Consosium and KEM Co was in charge of designing steel towers with anchor bolts and base plates beside to electrical engineering field. Then KEM Co have faced and over-comed many unenpected technical difficulties such as forced eccentricity joint on base plate, distorsion issue of 60mm thick plates welding, threading anchor bolts, tad heat treatment of some anchor bolts, disagreement from Consultant Engineer on multiplying factor of leg stresses for 45$^{\circ}$ wind and on reducing O.L.F for wind loads on cables for such 1220km long spans. After spending two years long period for designing and engineering towers, base plates, and anchor bolts, first shipment of tower was finally realized on Nov. 8, 1981 and on the other hand KDD has proceeded concrete caisson work on schedule at Jamuna river site and expected to complete tower erection and stringing of cables within this year of 1982 which was original completion target.

  • PDF

지중배전선로 무정전 공법의 최적화를 위한 장비 개발 (Development of outage-free installation method and equipments for underground power distribution system)

  • 유근양;주종민;이용순;김영민;강내국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.122-124
    • /
    • 2005
  • Underground distribution system is a trend due to the successive development of metropolitan area and satellite cities and the environment of the commercial and residential areas. The high quality of electricity, which is related with the minimal outage duration time due to the maintenance work for the underground distribution line, is mandatory. Hence, the construction method and tools for the outage-free maintenance construction have been required for underground distribution system. So far, all the efforts for outage-free maintenance for the underground distribution have been limited only to the survey for foreign countries situation and the theoretical provision; thus, It is required to develop the various construction method and the application tools. Differently from the aerial line, the construction of the underground cable is complicated and the insulation distance between conductor and shield should be maintained in loadmaking/breaking operation, though the apparatus connected with cable is a deadfront type. Also since the apparatus is installed above ground, by-pass of faulted area at busy area needs a variety of high technologies. Therefore, in this these, the authors introduce the development status of the loadbreak connectors, connection facilities, outage-free maintenance system for secondary side, a secondary auxiliary bushing and additional tools so that there can be more progress on this field.

  • PDF

안정적 전력공급을 위한 154kV 변전소 배전선로간 연계운영에 관한 연구 (A Study on Loop operation of 154kV Substation Distribution line for Stable power supply)

  • 김광호;손명권;정종찬
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.221-228
    • /
    • 2009
  • For a stable supply of electric power, periodical inspection of the electric facilities and repair of the distribution lines are required. In case of any unexpected accidents, looped operation among distribution lines may be necessary in order to supply electricity through the sound lines, separating the faulted lines. As a result of this study, it was found that normal looped operation became impossible when phase difference of the looped distribution lines is more than 3 degrees compared with the voltage supply of the distribution lines. Therefore, for a stable supply of electric power to Chuncheon, it is judged to be desirable that looped operation of the distribution lines coming from the same substation M. Tr Bank shall be performed in principle and in case of looped operation with the substation of different system, looped operation among the lines shall be performed after voltage regulation of the substation M. Tr Bank, maintaining similar voltages and load supply volume in order to avoid phase difference through checking the operation conditions of each substation M. Tr Banks. And when looped operation among the distribution lines is scheduled, voltage regulation schedule has been established so far by calculating maximum supply volume through the transformer of the substation and the maximum load volume through the distribution lines but in the future, looped operation of the distribution lines shall be carried out by removing voltage difference with regulating tap or load of the surrounding transformers, with giving prior notice to the substation operators.

  • PDF

DIP 및 BTMP 혼합비율에 따른 인쇄용지의 LCCO2 분석 (LCCO2 analysis of wood-containing printing paper by mixed ratio of de-inked pulp and BTMP)

  • 서진호;김형진;정성현;박광호
    • 펄프종이기술
    • /
    • 제45권2호
    • /
    • pp.46-55
    • /
    • 2013
  • Recently, there are growing interests on carbon emissions related in climate change which is worldwide emerging important issue. Some research works are now carrying out in order to reduce the carbon emission in pulp and paper industries by the synthesis of precipitated calcium carbonate using the exhaust carbon dioxide from combustion furnace or incinerator. However, for solving the original problems on carbon emission, we need to consider the analysis of basic methodology on $CO_2$ through the process efficiencies. There are two general tools for carbon emissions; one is the greenhouse gas inventory and the other is $LCCO_2$ method which is applied to particular items of raw materials and utilities in unit process. In this study, the carbon emissions in wood-containing printing paper production line were calculated by using $LCCO_2$ method. The general materials and utilities for paper production, such as fibrous materials, chemical additives, electric power, steam, and industrial water were analyzed. As the results, $Na_2SiO_3$ showed the highest loads in carbon emissions, and the total amount of carbon emissions was the highest in electricity. In the production line of printing paper using de-inked pulp and BTMP, as the mixing ratio of DIP was higher, the carbon emissions were decreased because of high use of electric power in TMP process.

원전 이용률의 의의 및 증진방안 고찰 (A Study on the Significance of Unit Capacity Factor (Utilization Rate) of Nuclear Power Plants and Measures for Increasing)

  • 이돈국;반치범
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.87-100
    • /
    • 2022
  • Unit capacity factor (utilization rate) of nuclear power plants (NPPs) is an important performance indicator. Since the first commercial operation of Kori Unit 1 began in April 1978, the utilization rate of domestic NPPs has gradually increased, reaching 90% from the end of the 1990s. However, due to various issues such as the Fukushima accident in 2011, corrosion of the CLP, the utilization rate dropped to 65~80%. In the early 1980s, the utilization rate of the U.S. NPPs was around 60%. However, since 2004, it has been consistently maintained above 90%. Therefore, in this study, we first examined the causes of declining the utilization rate in domestic NPPs. Next, the significances of the utilization rates are reviewed in five aspects: investment capability, electricity rate, safety and export, etc., with discussion on the current status of the utilization rates in the U.S. Based on this, three key factors are derived as the reasons of the increasing: equipment reliability program, on-line maintenance and the pursuit of institutional rationality. And finally, by synthesizing above results, the measures for increasing the utilization rate of domestic NPPs are proposed in terms of equipment management, institutional improvements, and personnel resources.

지능형 제어기법을 이용한 태양추적시스템에 관한 연구 (A study on the Photovoltaic Tracker System Using Method of Intelligent control)

  • 김평호;백형래;조금배
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2005
  • In this paper, 150W photovoltaic system using neural network tracker is proposed, the system designed as the normal line of the solar cell always runs parallel the ray of the sun. This design can minimize the cosine loss of the system output results of solar cell are sensitive to the change of weather and insolation condition don't react rapidly to parameter condition change such as system circumstance and deterioration. To achieve precise operation of photovoltaic tracker system using method of intelligent control, Neural Network is used in the design of the photovoltaic tracker system drive. The control performance of this system drive influenced by the environment parameter such as weather condition and motor parameter variations. we used synchronous motor in this tracker and the experimental results show that the fixing system shows 10,159[Wh] and tracking system shows 12,360[Wh] electricity.

Harmonic Distortion Contribution for the Transmission Loss Allocation in Deregulated Energy Market: A New Scheme for Industry Consumer

  • Nojeng, Syarifuddin;Hassan, Mohammad Yusri;Said, Dalila Mat;Abdullah, Md.Pauzi;Hussin, Faridah
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The industry has rapidly growth and energy supply technology advanced are become main factor which to contribute of the harmonic losses. This problem is one aspect that may affect the capability of the transmission line and also to the efficiency of electricity. This paper proposes a new scheme to allocate the cost pertaining to transmission loss due to harmonics. The proposed method, called as Generalized Harmonic Distribution Factor, uses the principle of proportional sharing method to allocate the losses among the transmission users especially for industry consumers. The IEEE 14- and 30 bus test system is used to compare the proposed method with existing method. The results showed that the proposed method provided a scheme better in allocating the cost of transmission loss, which could encourage the users to minimize the losses.

전력산업 구조개편 환경에서 비선형 내점법의 최적조류계산에 의한 전력조류 및 한계계수에 관한 연구 (A Study on Power Flow and Marginal Factor based on Optimal Power Flow using Nonlinear Interior Point Method under Restructuring Environment)

  • 정민화;남궁재용;권세혁
    • 에너지공학
    • /
    • 제11권4호
    • /
    • pp.291-298
    • /
    • 2002
  • 본 연구에서는 전력산업 구조개편 환경에서 최적조류계산에 의한 전력조류 및 한계계수를 해석할 수 있는 실용적인 방법론을 제시한다. 먼저, 유용한 한계계수의 산정을 위해 전압제약, 선로과부하 제약, 발전 출력 제약 등의 각종 계통제약이 고려된 연료비 및 송전손실 최소화의 비선형 최적화 문제가 정식화되고 비선형 주·쌍대 내점법에 의한 해법이 제시된다. 또한, 최적조류계산에 의해 계산된 감도에 기초하여 한계가격 및 한계송전손실의 산정방법이 제시된다. 특히, 경쟁적 전력시장에서 송전손실에 관한 가격을 반영하기 위해 한계손실계수의 해석법이 제안된다. 본 연구의 결과를 IEEE RTS 24모선에 적용하여 전력시장가격의 해석에 대한 그 유용성을 검증하였다.

해상풍력 실증 단지 육지 연계시 계통 영향 평가를 위한 안정도 해석에 관한 연구 (Study on Stability Analysis for Systematic Impact Assessment at the Cooperation of Land in Offshore Wind Power Generation Demonstration Complex)

  • 박상호;김건중;한상욱
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.151-157
    • /
    • 2017
  • In this paper, it is the result of analysis of the stability by power system analysis about the influence on the power system when the southwest - offshore wind power demonstration complex is constructed to 60MW and it is linked with the onshore power system. Considering the position of the wind turbine actually installed and the length of the cooperating line, we modeled the wind generators, offshore substation and the turbine step-up transformer. Changes of voltage when internal and external faults occurred is analyzed and the reactive power demand according to the amount of electricity generation is derived. And also phase angle stability and frequency is observed through a transient analysis. This paper clarify that there is no problem in the system when only offshore wind power is linked with the grid and try to present the reactive power amount necessary for maintaining the voltage of the point of cooperation appropriately.