• Title/Summary/Keyword: Electricity IT

Search Result 1,877, Processing Time 0.027 seconds

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler (유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구)

  • Gil, Doo-Song;Jung, Gye-Jo;Seo, Jung-Seok;Kim, Hak-Joon;Kwon, Chan-Wool
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Water wall tube is one of the major factors consisting of a fluidized bed boiler and it plays very important role for the generation of electricity within the boiler. But these water wall tubes within the fluidized bed boiler are subject to the ware and corrosion caused by the high temperature gas and the flowing medium. If water leak is occurred, the secondary damage by the water leak will occur. As a result of that, the power generation efficiency decreases noticeably. Therefore, the maintenance of the water wall tube is very important. In this study, we designed a exciter sensor based on simulation and composed a remote field eddy current system for the defect evaluation of the outer water wall tube. Starting from the shape design of exciter, we conducted simulations for various design factors such as the water wall tube size, material, frequency, lift-off and so on. Based on the results, we designed the optimum exciter sensor for the water wall tube test within the fluidized bed boiler.

Improving Forecast Accuracy of City Gas Demand in Korea by Aggregating the Forecasts from the Demand Models of Seoul Metropolitan and the Other Local Areas (수도권과 지방권 수요예측모형을 통한 전국 도시가스수요전망의 예측력 향상)

  • Lee, Sungro
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.519-547
    • /
    • 2017
  • This paper explores whether it is better to forecast city gas demand in Korea using national level data directly or, alternatively, construct forecasts from regional demand models and then aggregate these regional forecasts. In the regional model, we consider gas demand for Seoul metropolitan and the other local areas. Our forecast evaluation exercise for 2013-2016 shows the regional forecast model generally outperforms the national forecasting model. This result comes from the fact that the dynamic properties of each region's gas demands can be better taken into account in the regional demand model. More specifically, the share of residential gas demand in the Seoul metropolitan area is above 50%, and subsequently this demand is heavily influenced by temperature fluctuations. Conversely, the dominant portion of regional gas demand is due to industrial gas consumption. Moreover, electricity is regarded as a substitute for city gas in the residential sector, and industrial gas competes with certain oil products. Our empirical results show that a regional demand forecast model can be an effective alternative to the demand model based on nation-wide gas consumption and that regional information about gas demand is also useful for analyzing sectoral gas consumption.

Feed System Modeling of Railroad using Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 철도급전계통 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 2020
  • With the growing interest in fossil fuel depletion and environmental pollution, railroad cars operating in Korea are in progress as the conversion from diesel to electric vehicles expands. The photovoltaic system, which is applied as an example of the conversion of electric vehicles, is infinite and pollution-free, and can produce energy without generating hazards such as air pollution, noise, heat, and vibration, and maintain fuel transportation and power generation facilities. There is an advantage that is rarely needed. However, the amount of electricity produced depends on the amount of solar radiation by region, and the energy density is low due to the power generation of about 25㎡/ kWp, so a large installation area is required and the installation place has limited problems. In view of these problems, many studies have been applied to fuel cells in the railway field. In particular, the plan to link the fuel cell power generation system railroad power supply system must be linked to the power supply system that supplies power to the railroad, unlike solar and wind power. Therefore, it has a close relationship with railroad cars and the linkage method can vary greatly depending on the system topology. Therefore, in this paper, we study the validity through simulation modeling related to linkage analysis according to system topology.

EFFECTS OF ELECTRICAL STIMULATION ON THE NORMAL PERIODONTIUM (전기자극이 정상 치주조직에 미치는 영향)

  • Lim, Kyung-Seok;Kwon, Young-Hyuk;Lee, Man-sup;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.89-112
    • /
    • 2002
  • The earliest reports of the use of electrical energy to directly stimulate bone healing seem to be in 1853 from England, the techniques involved the introduction of direct current into the non-united fracture site percutaneously via metallic needles, with subsequent healing of the defect. One endpoint of the periodontal therapy is to generate structure lost by periodontal diseases. Several procedural advances may support regeneration of attachment, however, regeneration of alveolar bone does not occur consistently. Therefore, factors which stimulate bone repair are areas for research in periodontal reconstructive therapy. Effects of cytokines or growth factors on bone repair are examples of such areas. Another one is electrical current which occurs in bone naturally, so that such bone may be particularly susceptible to electrical therapy. The purposes of this study were to observe the effects of electrical stimulation on the normal periodontium, to determine whether the electricity is the useful means for periodontal regeneration or not. Forty rats weighted about 100 gram were used and divided into 4 groups, the first group, there was no electrical stimulation with the connection of electrodes only. In the second group, there was stimulated by the 10 mA during 10 minutes per a day, in the third group was stimulated by the 25 mA , and the fourth by the 50 mA. At 3, 5, 10 and 15 days post-appliance , two rats in each group were serially sacrificed. and the maxillae and the mandible processed to paraffin, and the specimens were prepared with Hematoxylin-Eosin stain for the light microscopic evaluation. The results of this study were as follows : 1. There was the distinct reversal line on the lingual alveolar crest, whereas a little changes in the labial alveolarcrest to the duration and amount of currents. 2. In 50 mA group, the cells were highly concentrated at the apex of anterior teeth, and was observed the necrotic tissue. In posterior root apex, the hypercementosis was appeared, and newly formed cementum layer has been increased continuously with the time. 3. The periodontal ligament fiber and Sharpey's fiber were arranged in order, and the bone trabeculae were increased as the experiment proceeded by, relatively the bone marrows were decreased. 4. In the pulp tissue, the blood vessels were increased with blood congestion in the experimetal specimens remarkably, and the dentinal tubules were obstructed . 5. The osteoblasts in alveolar bone proper had been showed highly activity, and also observed the formation of bone trabeculea. In the conclusion, it was suggested that the electrical stimulation has influence on the periodontium and the pulp tissue. However, there might be the injurious effects.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

An Analysis of Best Practices for Efficient Utility Relocation and an Inquiry into the Applicability of SUE (효율적인 지하지장물 이설을 위한 모범사례분석 및 SUE 적용에 관한 연구)

  • Lee, Seung-Hyun;Baek, Seung-Ho;Tae, Yong-Ho;Ahn, Bang-Ryul;Park, Hyeon-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.971-976
    • /
    • 2007
  • In the U.S., utility damages or utility delay caused by conflicts during the underground utility relocation is one of the weighty problem in the construction industry. Also, in domestic case, delay and additional cost caused by underground utility(i.e, electricity, communication, gas, water supply and sewerage) relocation has been happened so that there is an increase of claims for responsibility between owners and contractors. However, there is insufficient survey for the recent circumstance of additional cost for delay and design changes caused by utility relocation and shortage of enough research for solving and analyzing of causes and their ripple effect. This research presents a result of the study about the best practices of FHWA(Federal Highway Administration), SHAs(State Highway Agencies) and the utility companies managing utility relocation. Also, it presents the basic concept of SUE(Subsurface Utility Engineering), the most reliable tool of FHWA presented, and investigates the developing status about SUE in Korea. At the end of this paper, this research proposes a practical and more applicable study about the efficient utility relocation focusing on local industry.

  • PDF

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

Design and Implementation of File Cloud Server by Using JAVA SDK (Java SDK를 이용한 파일 클라우드 시스템의 설계 및 구현)

  • Lee, Samuel Sangkon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.86-100
    • /
    • 2015
  • Cloud computing is a computing term that evolved in the late 2000s, based on utility and consumption of computer resources. Google say that "Cloud computing involves deploying groups of remote servers and software networks that allow different kinds of data sources be uploaded for real time processing to generate computing results without the need to store processed data on the cloud. Cloud computing relies on sharing of resources to achieve coherence and economies of scale, similar to a utility (like the electricity grid) over a network. At the foundation of cloud computing is the broader concept of converged infrastructure and shared services. Cloud computing, or in simpler shorthand just "the cloud", also focuses on maximizing the effectiveness of the shared resources." The cloud service is a smart and/or intelligent service to save private files in any device, anytime, anywhere. Dropbox, OAuth, PAClous are required that the accumulated user's data are archives with cloud service. Currently we suggest an implementation technique to process many tasks to the cloud server with a thread pooling. Thread pooling is one of efficient implementating technique for client and service environment. In this paper, to present the implementation technique we suggest three diagrams in the consideration of software engineering.

A study on the Effect of Electricity Environment Interference for Very High Voltage 345kV T/L (초고압 345kV T/L으로 인한 전기 환경 장해 영향에 대한 연구)

  • Yim, Hwang-bin;Ko, Nam-gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • We centrally study effect of very high voltage 345kV T/L which is set up at residential area (Yangyang~Donghae in Gangwon-do) to broadcasting radio wave and human body. First, to compare predicted result of radio wave disturbance, we set 7 area 13 point and divide broadcasting quality, electric and magnetic fields in T/L process. Result of estimation, we confirm that when receiving broadcasting radio wave, broadcasting quality's difference is generated by topographic property of near receiving point. also through result of electric fields and broadcasting quality and their comparison, we judge that high voltage T/L is barely affect receive of broadcasting radio wave. To judge effect of magnetic fields to human body, we analyze magnetic fields in variable area and condition. as a result, magnetic fields of every area has 1.8mG(WHO international standard amount is 833mG). So It is proved that magnetic fields of 345kV Yangyang~Donghae area has slight, tiny effect to human body.

  • PDF