• Title/Summary/Keyword: Electrical systems

Search Result 12,996, Processing Time 0.041 seconds

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Improvement of Demagnetization by Rotor Structure of IPMSM with Dy-free Rare-Earth Magnet

  • Imamura, Keigo;Sanada, Masayuki;Morimoto, Shigeo;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Permanent magnet (PM) motors that employ rare-earth magnets containing dysprosium (Dy) are used in electric and hybrid electric vehicles. However, it is desirable to reduce the amount of Dy used since it is expensive. This study investigates the rotor structure of a PM synchronous motor with a Dy-free rare-earth magnet. Flux barrier shapes and PM thicknesses that enhance the irreversible demagnetization are investigated. In addition, a rotor structure that improves the irreversible demagnetization is proposed. We demonstrate that the proposed rotor structure without Dy improves the irreversible demagnetization.

Basic Study of IPMSM with High-Temperature Superconducting Wire Rod

  • Okada, Kazuya;Morimoto, Shigeo;Sanada, Masayuki;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • It is important to improve the efficiencies of motors to overcome problems such as decreasing energy reserves and environmental pollution. Superconductors are promising for developing high-efficiency motors. However, superconducting wires must be kept in critical conditions and the AC loss needs to be minimized. In this paper, a design of a superconducting interior permanent magnet synchronous motor (IPMSM) is proposed that reduces the AC loss. The characteristics of superconducting and normal-conducting IPMSMs are compared. The proposed superconducting IPMSM has a low AC loss and a very high efficiency at low speeds.

Design of a closed-loop controller for discrete-time singularly perturbed bilinear systems (특이 섭동 이산시 쌍일차 계통질서의 폐루프 최적 제어기 설계)

  • Kang, Hyun-Goo;Kim, Beom-Soo;Choi, Won-Ho;Kwon, Yo-Han;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.643-645
    • /
    • 1999
  • In between of linear and nonlinear systems lies a large class of bilinear systems. The major importance of bilinear systems lies in the applications to the real world systems such as many physical processes, many biological process, some economic process. Despite vast application of bilinear systems they have not been studied extensively in the domain of singularly perturbations except for a few minor results. In this paper we will utilize singular peturbations theory to obtain the closed-loop optimal solution for discrete-time bilinear systems.

  • PDF

A Study on the Enhancement of Accuracy of Network Analysis Applications in Energy Management Systems (계통운영시스템 계통해석 프로그램 정확도 향상에 관한 연구)

  • Cho, Yoon-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.88-96
    • /
    • 2015
  • This paper describes a new method for enhancing the accuracy of network analysis applications in energy management systems. Topology processing, state estimation, power flow analysis, and contingency analysis play a key factor in the stable and reliable operation of power systems. In this respect, the aim of topology processing is to provide the electrical buses and the electrical islands with the actual state of the power system as input data. The results of topology processing is used to input of other applications. New method, which includes the topology error analysis based on inconsistency check, coherency check, bus mismatch check, and outaged device check is proposed to enhance the accuracy of network analysis. The proposed methodology is conducted by energy management systems and the Korean power systems have been utilized for the test systems.

A Design of Vector Quantization Optimal Fuzzy Systems for Vision-Based Robot Control Systems (영상 기반 로붓 제어 시스템을 위한 벡터 양자화 최적 퍼지 시스템 설계)

  • Kim, Young-Joong;Kim, Young-Rak;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2447-2449
    • /
    • 2003
  • In this paper, optimal fuzzy systems using vector quantization and fuzzy logic controllers are designed for vision-based robot control systems. The complexity of the optimal fuzzy system for vision-based control systems is so great that it can not be applied to real vision-based control systems or it can not be useful, because there are so many input-output pairs. Therefore, we generally use the clustering of input-output pairs, in order to reduce the complexity of optimal fuzzy systems. To increase the effectiveness of the clustering, a vector quantization clustering method is proposed. In order to verify the effectiveness of the proposed method experimentally, it is applied to a vision-based arm robot control system.

  • PDF

An Analysis on Power Demand Reduction Effects of Demand Response Systems in the Smart Grid Environment in Korea

  • Won, Jong-Ryul;Song, Kyung-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1296-1304
    • /
    • 2013
  • This study performed an analysis on power demand reduction effects exhibited by demand response programs, which are advanced from traditional demand-side management programs, in the smart grid environment. The target demand response systems for the analysis included incentive-based load control systems (2 month-ahead demand control system, 1~5 days ahead demand control system, and demand bidding system), which are currently implemented in Korea, and price-based demand response systems (mainly critical peak pricing system or real-time pricing system, currently not implemented, but representative demand response systems). Firstly, the status of the above systems at home and abroad was briefly examined. Next, energy saving effects and peak demand reduction effects of implementing the critical peak or real-time pricing systems, which are price-based demand response systems, and the existing incentive-based load control systems were estimated.

Finite-horizon Tracking Control for Repetitive Systems with Uncertain Initial Condition (불확실한 초기치를 갖는 반복시스템에 대한 유한구간 추종제어)

  • Choi, Yun-Jong;Yun, Sung-Wook;Lee, Chang-Hee;Cho, Jae-Young;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.297-298
    • /
    • 2007
  • Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively and are widely spread in industrial fields. Hence, those systems have been of much interests by many researchers, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities. A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

  • PDF

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.