• Title/Summary/Keyword: Electrical strength

Search Result 2,288, Processing Time 0.029 seconds

The effect of lanthanum on the solidification curve and microstructure of Al-Mg alloy during eutectic solidification

  • Xie, Shikun;Yi, Rongxi;Guo, Xiuyan;Pan, Xiaoliang;Xia, Xiang
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 2015
  • The influence of rare earth lanthanum (La) on solidification cooling range, microstructure of aluminum-magnesium (Al-Mg) alloy and mechanical properties were investigated. Five kinds of Al-Mg alloys with rare earth content of La (i.e., 0, 0.5, 1.0, 1.5 and 2.0 wt.%) were prepared. Samples were either slowly cooled in furnace or water cooled. Results indicate that the addition of the rare earth (RE) La can significantly influence the solidification range, the resultant microstructure, and tensile strength. RE La can extend the alloy solidification range, increase the solidification time, and also greatly improve the flow performance. The addition of La takes a metamorphism effect on Al-Mg alloy, resulting in that the finer the grain is obtained, the rounder the morphology becomes. RE La can significantly increase the mechanical properties for its metamorphism and reinforcement. When the La content is about 1.5 wt.%, the tensile strength of Al-Mg alloy reaches its maximum value of 314 MPa.

Design of High-Speed LSM Rotary Type Testing Machine in Consideration of Mechanical Strength (기계적 강도를 고려한 초고속 선형동기전동기 회전형 시험기 설계)

  • Seol, Hyun-Soo;Park, Eung-Seok;Lee, Ju;Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.824-829
    • /
    • 2015
  • The rotary type testing machine undergoes mechanical stress as an external force is applied. In case of the rotary type testing machine, even a tiny flaw results in a fatal demage because the size of the machine is huge. Therefore, when designing the rotary type testing machine, it is necessary to secure a safety factor with the mechanical stress analysis in order to prevent the machine from being destroyed due to scattering or transformation of rotating field. This thesis proposes a LSM rotary type tesitng machine which rotates at the speed of up to 600km/h. And the mechanical stress is considered in order that the safety factor remains above 1.5 at the maximum speed. In addition, because normal force as well as thrust occurs in the machine, the normal force exerted was considered through the strength analysis. Finally, a design plan which enables to weaken the normal force affecting the rotary type testing machine is introduced and its validity is proved by the results of FEM analysis.

AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer (배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

AC Dielectric Breakdown Properties and Mechanical Properties of Interpenetrating Polymer Network Epoxy Resin (상호침입망목 에폭시수지의 교류 절연파괴특성 및 기계적 특성)

  • 이덕진;김명호;김경환;심종탁;손인환;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.320-323
    • /
    • 1995
  • In this paper, in order to improve withstand voltage properties of epoxy resin, IPN(interpenetrating polymer network) method was introduced and the influence was investigated. The sing1e network structure specimen(E series), simultaneous interpenetrating polymer network specimen(EMF series) and pseudo interpenetrating polymer network(EMP series) specimen were manufactured. In order to understand the internal structure properties, scanning electron microscopy method was utilized, rind glass transition temperature was measured. Also, AC voltage dielectric strength, tensile strength and impact strength were measured to investigate influence upon electrical and mechanical properties. As a result, it was confirmed that simultaneous interpenetrating polymer network specimen was the most execellent.

  • PDF

Analysis of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties (절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 분석)

  • 최철호;박용필;임중관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.414-419
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of (idled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

Evaluation of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties (절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 평가)

  • Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.212-217
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

Change of Properties by Environment Conditions in Aged ACSR Overhead Conductor (환경적 요인에 의한 노후 가공송전선의 특성변화)

  • Kim Shang-Shu;Kim Byung-Geol;Jang Tae-In;Kang Ji-Won;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.287-291
    • /
    • 2006
  • This paper describes mechanical and electric properties of ACSR $410\;mm^2$ conductor from many of older overhead conductor. Samples of conductors itemized two division according to operation sector, green area, salt and pollution area. Samples of conductors operated various environment conditions have undergone laboratory metallurigical investigation and tensile strength torsional ductility and electrical performance. The steel core were found to have retained their original properties to a large degree in both tensile strength and the number of turns to failure. On the other hand the aluminum conductor showed reductions in tensile strength. To determine the remaining useful life of aged conductor, an unacceptable deterioration level has to established for each diagnostic procedure.

Protect Measures and Impact of Electric Pole for Abnormal Tension of Messenger Wire (전력선 벤드 장력 작용에 대한 전주의 영향)

  • Cho, Hyeon-Seob;Kim, Young-Cho;Kim, Sung-Woon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.302-306
    • /
    • 2006
  • In this study, we analyzed the influence of electrical pole by FEM(Finite Element Method) and developed protective system by designing and interpreting protective system for electrical pole when abnormal strength worked on messenger wire. Protective system did not shed messenger wire under wind pressure and discontent load but did assign a part to preventing rupture of electrical pole through automatically shed messenger wire over fixed strength. Structure of protective system analysis by FEM and prove property by measuring tensile strength for practical product.

  • PDF

Basic Principle for Determining Azimuthal Anchoring Strength by using HAN/TN Two Domain Liquid Crystal Cell

  • Tanaka, Norihiko;Kimura, Munehiro;Akahane, Tadashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • We propose a novel technique for evaluating the azimuthal anchoring strength of the alignment film on the nematic liquid crystal (LC). In our evaluation, a unique cell, which has two domain in one cell, was used; one is hybrid aligned nematic (HAN) region, the other is twsited nematic (TN) region (viz. HAN/TN two domain cell). From the comparison of director angles on the front substrate with each region, we are able to determine the angle between easy axis and real director axis on the front substrate. From this evaluation, the azimuthal anchoring strength was obtained accurately.

  • PDF

Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase (도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공)

  • 윤존도;왕덕현;안영철;고철호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF