• 제목/요약/키워드: Electrical power systems

검색결과 4,798건 처리시간 0.026초

Korean Power System Security Analysis Using Benchmark Systems

  • Cho Yoon-Sung;Jang Gilsoo
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with the development of benchmark systems based on the Korea Electric Power Corporation (KEPCO) system. A novel procedure for constructing a dynamic equivalent system of the KEPCO system is proposed. By using such a system, various scenarios can be simulated and compared with the original system. The results of the simulation show the benefits of the proposed equivalent system and its validity is confirmed by applying it to the KEPCO system.

태양광 발전과 에너지저장시스템을 활용한 모빌리티 충전 시스템의 제어 방법 (Control Strategies of Mobility Charging Systems Using PV-ESS Systems)

  • 김대원;이현민;박성민
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.334-341
    • /
    • 2021
  • Operation modes and control strategies for single-phase mobility charging station utilizing photovoltaic (PV) generation and energy storage systems (ESS) are proposed. This approach generates electric power from PV to transmit the mobility, ESS, and then transfer it to the grid when surplus electric power is generated during daytime. However, the PV power cannot be generated during night-time, and ESS and the mobility system can be charged using grid power. The power balance control based on power fluctuations and the resonant current control that can compensate harmonic components have been added to increase the stability of the system. The MATLAB/Simulink simulation was carried out to verify the proposed control method, and the 2-kW single-phase grid-tied PV-ESS smart mobility charger was built and tested.

3상 3선/4선식 전력계통의 고조파 저감을 위한 새로운 직렬형 능동 필터 시스템 (A Novel Series Active Power Filter for Harmonic Reduction of 3-Phase 3-Wire/4-Wire System)

  • 김명현;임승원;한윤석;김영석;원충연;최세완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.349-351
    • /
    • 1999
  • This paper presents a new control algorithm for series active power filters that are applied to 3-phase 3-wire and 3-phase 4-wire systems with capacitive loads. It is difficult to reduce harmonic currents in neutral lines of the 3-phase 4-wire systems using conventional series active power filter control methods. 3-phase 4-wire series active power filter systems using the proposed method in this study lower neutral line harmonics. Simulation was carried out to verify the algorithm.

  • PDF

Primary Restoration Path Selection Considering Ferranti Effect and Reactive Power Capability of Black-start Generators

  • Park, Ji-Man;Lee, Heung-Jae;Yu, Won-Kun;Jang, Byung-Tae;Lee, Kyeong-Seob
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1377-1382
    • /
    • 2015
  • Power system restoration following a massive blackout starts with re-energizing Primary Restorative Transmission (PRT) systems at first. As power systems have been gradually enlarged and become more complex, periodical evaluation and reassignment of PRTs are needed. So far it has been decided by try and error approach by corresponding human experts to analyze and evaluate them. This paper presents an intelligent system that finds optimal primary restoration paths using analytic and heuristic knowledge from PSS/E data, and suggests an optimal PRTs depending on the condition of Ferranti effect or a reactive power capability margin of black-start generator. This system was tested in Korea Electric Power system, and showed a promising result.

Transient Current Suppression Scheme for Bi-Directional DC/DC Converters in 42V Automotive Power Systems

  • Lee, Woo-Cheol;Yoo, Chang-Gyu;Lee, Kyu-Chan;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.517-525
    • /
    • 2009
  • 42V electrical power systems are on their way to replacing the present l4V systems in automobiles and 42V/14V dual voltage systems have been proposed to provide backward compatibility with the existing components for the 14V systems. A synchronous buck/boost converter is an attractive topology for 42V/14V dual voltage systems since it offers the possibility of bi-directional operation without additional components. In this paper, transient currents generated during converter startup or changes in operation modes between buck and boost are analyzed and a cost effective solution to remove the transient currents is proposed. The validity of the proposed control strategy is investigated through simulation and experiment with bi-directional converters.

전력계통에서 동조 현상 (A Sync Phenomenon in Power Systems)

  • 심관식;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권4호
    • /
    • pp.163-171
    • /
    • 2006
  • This paper presents a definition of sync phenomenon occurring in power systems, and describes the characteristics of sync in basic electric circuits. In addition, sync observed in basic circuits was extended to the analysis of dynamic characteristics in power systems. This paper, moreover, describes the sync occurring among system outputs from time domain simulation for two-area systems. In power systems, sync is a common phenomenon that is always observed among generator powers or bus voltages. Thus, we can use sync to obtain the characteristics of power systems without being bound to a specific operating point. Sync can be useful information in power system operation and planning.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

A Wire-overhead-free Reset Propagation Scheme for Millimeter-scale Sensor Systems

  • Lee, Inhee;Bang, Suyoung;Kim, Yejoong;Kim, Gyouho;Sylvester, Dennis;Blaauw, David;Lee, Yoonmyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권4호
    • /
    • pp.524-533
    • /
    • 2017
  • This paper presents a novel reset scheme for mm-scale sensing systems with stringent volume and area constraints. In such systems, multi-layer structure is required to maximize the silicon area per volume and minimize the system size. The multi-layer structure requires wirebonding connections for power delivery and communication among layers, but the area overhead for wirebonding pads can be significant. The proposed reset scheme exploits already existing power wires and thus does not require additional wires for system-wide reset operation. To implement the proposed reset scheme, a power management unit is designed to impose reset condition, and a reset detector is designed to interpret the reset condition indicated by the power wires. The reset detector uses a coupling capacitor for the initial power-up and a feedback path to hold the developed supply voltage. The prototype reset detector is fabricated in a $180-{\mu}m$ CMOS process, and the measurement results with the prototype mm-scale system confirmed robust reset operation over a wide range of temperatures and voltages.

Modelling and Stability Analysis of AC-DC Power Systems Feeding a Speed Controlled DC Motor

  • Pakdeeto, Jakkrit;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1566-1577
    • /
    • 2018
  • This paper presents a stability analysis of AC-DC power system feeding a speed controlled DC motor in which this load behaves as a constant power load (CPL). A CPL can significantly degrade power system stability margin. Hence, the stability analysis is very important. The DQ and generalized state-space averaging methods are used to derive the mathematical model suitable for stability issues. The paper analyzes the stability of power systems for both speed control natural frequency and DC-link parameter variations and takes into account controlled speed motor dynamics. However, accurate DC-link filter and DC motor parameters are very important for the stability study of practical systems. According to the measurement errors and a large variation in a DC-link capacitor value, the system identification is needed to provide the accurate parameters. Therefore, the paper also presents the identification of system parameters using the adaptive Tabu search technique. The stability margins can be then predicted via the eigenvalue theorem with the resulting dynamic model. The intensive time-domain simulations and experimental results are used to support the theoretical results.

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.