• Title/Summary/Keyword: Electrical fires

Search Result 184, Processing Time 0.022 seconds

Analysis of the Response Time of a Photoelectric Spot-Type Smoke Detector Depending on the Type of Fires (화원에 따른 광전식 연기감지기 반응시간 분석)

  • Jee, Seung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.89-94
    • /
    • 2013
  • The fire testing performed for smoke detector model approval in Korea tests only one kind of fire smoke. A photoelectric spot-type smoke detector using Mie scattering is affected by the wavelength of light beam and the particle diameter. According to UL (Underwriters Laboratories Inc.) 268 standard, this paper analyze the characteristic of the response for a photoelectric spot-type smoke detector on sale in Korea using various fire smokes. Probability that the response time is included in non-defective range is 100% in paper fire, 90% in wood fire and 75% in flammable liquid fire, 90% in wood fire and 75% in flammable liquid fire. According to the estimation for population mean of the response time choosing a confidence level of 99%, a maximum of 19% for wood fire and that of 38% for flammable liquid fire are defective. As the result of analysis of smoke particle, this paper is found that these results are caused by the smoke particles are wide variations in size or have very black.

Generation and Detection of Discharge Signals in Deteriorated (열화된 저압용 콘센트에서 방전신호의 발생과 검출)

  • Song, Jae-Yong;Seo, Hwang-Dong;Moon, Seung-Bo;Kil, Gyung-Suk;Cho, Young-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.200-203
    • /
    • 2005
  • Most of electrical fires are caused by short circuits, overheating of wires, deterioration and incomplete connection of wiring devices. The last two cases are predictable before the occurrence of fire because of its slow progress. In this paper, we have simulated the discharge signals caused by the deterioration and incomplete connection of wiring devices using an aged concent to provide information on the characteristics of discharge signals. From the experimental data, we could characterize the frequency spectrums of the discharge signals depending on the cases. The higher frequency components of the signal are attenuated by the capacitance and inductance of power lines as the measuring point is getting away from the discharges. Main frequency components of the discharge signal are existent at 600 kHz - 1.5 MHz in incomplete connections and at 210 kHz - 8 Mhz in deteriorations of the concent.

  • PDF

Implementation of a Inference based Intelligent Distribution Panel System for Prevention and fast Detection of fire caused by Electricity (전기화재 예방과 신속 감지를 위한 추론기반 지능형 수배전반 시스템 구현 연구)

  • Park, Chan-Eom;Kim, Kyung-Dong;Lee, Seung-Chul;Yang, Won-Young
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.82-85
    • /
    • 2006
  • With the fast growing number of skyscrapers and large ultrahigh apartment complexes, the concerns on fire caused by electricity also grow. Among about 30,000 fires recorded annually, roughly one third of them are hewn to be caused by electricity. If one of such high and densely populated buildings or apartments catches a fire, the consequence can potentially be quite catastrophic. However, with the rapid development of the techniques in the fields of communications and computers, electric power distribution systems for such buildings and apartments have been largely digitalized in recent years. More detailed informations on the operating status are now available, which enables more sophisticated monitoring and early detection of potential fire caused by electricity. In this paper, we present an inference technique that can be used as one of the basic techniques in building intelligent distribution panel systems that can effectively monitor, prevent and detect the occurrence of fire caused by electricity. The technique can accommodate production rules in linguistic expressions on high abstraction levels. Fire finding strategies can be easily modified to provide more effective countermeasures. Simulation results show that inference capabilities and thus the capability of fire monitoring in power distribution panel systems can be significantly enhanced with our approach.

  • PDF

Design of very fast acting fuse element using the Ag-Cu alloy (Ag-Cu 합금을 이용한 매우 빠른 동작 특성의 퓨즈 엘리멘트 설계)

  • Kim, Eun-Min;Lee, Seung-Hwan;Cho, Dae-Kweon;Kim, Shin-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1070-1074
    • /
    • 2014
  • With the development of the electronics industry and widespread supply of many different electrical appliances, the factors of the electrical fires are also diversified. For this reason, the fuse, safety-critical component, needs accurate and stable operating characteristics for preventing various fire factor, and also needs various operating characteristics. Especially when the all electrical resistance are dropped by internal short of circuit, high current inrushes and makes the fire. In order to prevent this, very fast acting fuses should be applied. However, existing very fast acting characteristics fuse has less wire dimension of element Ag100% metal than that of fast acting fuse, and it is made of plating with low melting point metals, so it satisfy very fast acting but it can't satisfy durability and safety. For this reason, in this study, through the analyzing fusing characteristics of Ag-Cu alloy composition, the new alloy composition, which implement to very fast acting fuse without decrease of fuse elements dimension, is suggested. And this study classify the operating characteristics changes, a resistance change, and the rated current of the fuse in the overall composition change of Ag-Cu alloying. and it can be utilized for designing fuse.

A Study on the Fire Cause Analysis of Motor Damage (전동기 소손에 대한 화재 원인 분석에 관한 연구)

  • Lee, Chun-Ha;Ok, Kyung-Jae;Kwon, Byung-Duck
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2007
  • We studied on the fires about the electrical motors in this paper. We compared and analyzed about the transformation and damage state of single-phase induction motors used in the home appliances when we applied electrical overload and exterior flame. This experiment was progressed by the electrical overload application test and the exterior flame application test through the locked rotor of motor. In case of the exterior flame application test, it is divided into the apply voltage case and not apply voltage case. The result of an experiment through the locked rotor of motor, it was able to observe the short-circuit marks between layers at the winding coil parts, and it was appeared a transformed dendritic tissue structure of winding coil by the electrical overload test. The application voltage and the application exterior flame, it was confirmed that the stator winding coil parts were remain original shapes and observed that the color of the winding coil's circumference was changed to red. The non-application voltage and the application exterior flame, it was observed that the stator winding coil parts were transformed quite from original shapes. It was observed that the color of the winding coil and circumference parts was changed to red at the same case of non-application voltage.

The Structural Design of the Bus-bar block type of electrical switch boards (전기분전반용 블록형 부스 바의 구조 설계 연구)

  • Kwon, Young-min;Hwang, Chang-yu;Kim, Kyun-ho;Han, Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.378-385
    • /
    • 2016
  • The internal circuit of the bus-bar for an electrical switch board is a prime cause of electric shock and short circuit accidents due to the exposure of live parts. Electrical fires can also be caused by animals and foreign substances in the switchboard that connect the components with a difficult structure resulting in overheating due to an increase in contact resistance. Preventing these types of accidents is a prime concern in the manufacturing process, such as cutting and bending. In this study, the cutting bus bar of a switch board contained improved modules as a flame retardant that isolates a separate blocks to prevent such problems. This was implemented as a scalable and flexible means of reducing electrical switchboard hazards to offer a safe switch board bus-bar structure of a new connecter type

Analysis and Risk Prediction of Electrical Accidents Due to Climate Change (기후환경 변화에 따른 전기재해 위험도 분석)

  • Kim, Wan-Seok;Kim, Young-Hun;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.603-610
    • /
    • 2018
  • The development of industry and the increase in the use of fossil fuels have accelerated the process of global warming and climate change, resulting in more frequent and intense natural disasters than ever before. Since electricity facilities are often installed outdoors, they are heavily influenced by natural disasters and the number of related accidents is increasing. In this paper, we analyzed the statistical status of domestic electrical fires, electric shock accidents, and electrical equipment accidents and hence analyzed the risk associated with climate change. Through the analysis of the electrical accidental data in connection with the various regional (metropolitan) climatic conditions (temperature, humidity), the risk rating and charts for each region and each equipment were produced. Based on this analysis, a basic electric risk prediction model is presented and a method of displaying an electric hazard prediction map for each region and each type of electric facilities through a website or smart phone app was developed using the proposed analysis data. In addition, efforts should be made to increase the durability of the electrical equipment and improve the resistance standards to prevent future disasters.

Analysis of a Fire Case Caused by Heat Generation due to Cu2O Breeding (아산화동증식 발열에 의한 화재 사례의 분석)

  • Park, Jin-Young;Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.54-63
    • /
    • 2020
  • Although fires caused by heat generation due to Cu2O breeding in wire connections are well-known among fire investigators, there are few papers on the analysis and introduction of fire cases by heat generation due to Cu2O breeding. This study analyzed fire statistics caused by heat generation in electrical connections and the phenomena and features of heat generation due to Cu2O breeding. Then, a fire which occurred in the wire connection in a university lab by heat generation due to Cu2O breeding was analyzed in more detail. This fire case could reach a conclusion that heat generation due to Cu2O breeding caused a fire in the wire connection through the fire pattern investigation of fire origin, the visual investigation of wire connection, 3D CT, power-on-test, and stereoscopic microscopy, SEM and EDS analysis.

A Study on Analysis of Arc Current Waveforms for Detection of Prognostics of Electrical Fires (전기화재 징후 감지를 위한 아크전류 파형분석에 관한 연구)

  • Hwang, Jin-Kwon
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Several electrical loads such as inrush current, normal operation arcing and non-sinusoidal loads have normal current waveforms similar to arc waveforms. To detect arcs in such loads, therefore, it is necessary to analyze difference between current waveforms with or without arcs. In this paper, using apparatuses of arc generation in UL 1699, arcs are generated in these loads and, then, arc current waveforms are investigated in both the time and the frequency domains to find arc characteristics. This investigation shows that arc current signals have shoulders at some zero current points in the time domain and increment of spectrum magnitude in all over frequency domain. It also shows that the arc characteristics at normal operation arcing and non-sinusoidal loads are detected more easily in the frequency domain than in the time domain. This investigated arc characteristics are expected to be utilized as the basis of development of arc-fault circuit interrupters.

Arc Detection using Logistic Regression (로지스틱 회기를 이용한 아크 검출)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.566-574
    • /
    • 2021
  • The arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. On the contray, Deep neural network (DNN) direcly utilizes raw data without feature extraction, based on end-to-end learning. However, a disadvantage of the DNN is processing complexity, posing the difficulty of being migrated into a termnial device. To solve this, this paper proposes an arc detection method using a logistic regression that is one of simple machine learning methods.