• Title/Summary/Keyword: Electrical discharge

Search Result 3,716, Processing Time 0.029 seconds

An Electrochemical Study on the Carbon Black Conductor Prepared by Plasma Pyrolysis of Methane (메탄 플라즈마 분해에 의해 제조된 카본블랙 도전재의 전기화학적 특성에 대한 연구)

  • Yoon, Se-Rah;Lee, Joong-Kee;Cho, Won-Ihl;Baek, Young-Soon;Ju, Jae-Beck;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2003
  • Plasma carbon black(PB) which prepared by plasma pyrolysis of methane was treated at 800, 1300 and $2100^{\circ}C$ under $2\times10^{-2}$ torr. Four different samples including raw PB were added to $LiCoO_2$, cathode active material of lithium secondary battery, to investigate effects of properties of plasma black as conductors on electrochemical characteristics. Based on our experimental results, PB conductors with low amount of surface functional groups and high electrical conductivity enhanced the cyclability and the initial discharge capacity. However, deterioration of rate capability and cyclability were observed (or the plasma black treated at $2100^{\circ}C$ For the plasma black conductor prepared from plasma pyrolysis, the effects of properties of carbon black on electrochemical characteristics were combined results of changes in electrical conductivity and structural properties such as agglomeration of plasma black. The conductivity of plasma black increased with treatment temperature, while dispersion of plasma black decreased. As a result, the high cyclability of cell was observed at $800^{\circ}C$ of heat treatment temperature.

Assessment of Biological Toxicity Monitoring in Water Using Sulfur Oxidizing Bacteria (하천수의 생태독성을 파악하기 위한 황산화미생물의 이용가능성 평가)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.170-174
    • /
    • 2012
  • BACKGROUND: Inappropriate discharge of wastewaters and industrial effluents are becoming detrimental to the aquatic environment. The presence of toxic substances on wastewaters can be detected by physicochemical and biological methods. However, physicochemical methods do not give any information about biological toxicity. Therefore, in this study we tried to detect the presence of toxic substance on waters using sulfur-oxidizing bacteria (SOB) as a bioassay. MATERIALS AND RESULTS: The SOB biosensor was first stabilized using synthetic stream water and operated in both continuous and semi-continuous mode. When the SOB biosensor was operated in continuous mode, the effluent electrical conductivity (EC) stabilized at~1.72 dS/m. While in the case of semi-continuous, the EC stabilized at~0.6 dS/m. The SOB system was also operated at different reaction times to ascertain the shortest reaction time for monitoring the toxicity. Finally, the SOB biosensor was fed with nitrite as toxic substance. When 5 mg/L of nitrite was added to the SOB system, the EC decreased immediately. However, the EC recovered after few cycle. CONCLUSION: This study shows that the SOB biosensor can be used as warning system to protect aquatic environment from hazardous materials. Although SOB biosensor can not give specific information about the toxic substances, it can assess whether the water is toxic or not.

Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle (홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작)

  • Yeon, Kyoheum;Kim, Sidong;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A current sensor is one of important component which is used for the electrical current measurement during charge and discharge of the battery, and monitoring system of the motor controller in the electric and hybrid vehicle. In this study, we have developed an open loop type current sensor using GaAs Hall sensor and magnetic core has an air gap. The Hall sensor detect magnetic field produced by the current to be measured. The 3 mm air gap core was made by HGO electrical steel sheets after slitting, winding, annealing, molding, and cutting. Developed current sensor shows 0.03 % linearity within DC current range from -400 A to +400 A. Operating temperature range was extended to the range of $-40{\sim}105^{\circ}C$ using temperature compensating electronic circuit. To Improve frequency bandwidth limit due to the air flux of PCB (Printed Circuit Board) and Hall sensor, We employed an air flux compensating loop near Hall sensor or on PCB. Frequency bandwidth of the sensor was 100 kHz when we applied sine wave current of $40A{\cdot}turn$ in the frequency range from 100 Hz to 100 kHz. For the dynamic response time measurement, 5 kHz square wave current of $40A{\cdot}turn$ was applied to the sensor. Response time was calculated time reach to 90 % of saturation value and smaller than $2{\mu}s$.

Comparison of the Performance of Machine Learning Models for TOC Prediction Based on Input Variable Composition (입력변수 구성에 따른 총유기탄소(TOC) 예측 머신러닝 모형의 성능 비교)

  • Sohyun Lee;Jungsu Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.19-29
    • /
    • 2024
  • Total organic carbon (TOC) represents the total amount of organic carbon contained in water and is a key water quality parameter used, along with biochemical oxygen demand (BOD) and chemical oxygen demand (COD), to quantify the amount of organic matter in water. In this study, a model to predict TOC was developed using XGBoost (XGB), a representative ensemble machine learning algorithm. Independent variables for model construction included water temperature, pH, electrical conductivity, dissolved oxygen concentration, BOD, COD, suspended solids, total nitrogen, total phosphorus, and discharge. To quantitatively analyze the impact of various water quality parameters used in model construction, the feature importance of input variables was calculated. Based on the results of feature importance analysis, items with low importance were sequentially excluded to observe changes in model performance. When built by sequentially excluding items with low importance, the performance of the model showed a root mean squared error-observation standard deviation ratio (RSR) range of 0.53 to 0.55. The model that applied all input variables showed the best performance with an RSR value of 0.53. To enhance the model's field applicability, models using relatively easily measurable parameters were also built, and the performance changes were analyzed. The results showed that a model constructed using only the relatively easily measurable parameters of water temperature, electrical conductivity, pH, dissolved oxygen concentration, and suspended solids had an RSR of 0.72. This indicates that stable performance can be achieved using relatively easily measurable field water quality parameters.

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.

Water Quality in a Drainage System Discharging Groundwater from Sangdae-ri Water Curtain Cultivation Area near Musimcheon Stream, Cheongju, Korea (무심천 인근 상대리 수막재배지에서 지하수 사용 후 배출되는 최종 배수로 물의 수질 특성)

  • Moon, Sang-Ho;Kim, Yongcheol;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.409-420
    • /
    • 2015
  • The Sangdae-ri riverside around Musimcheon stream, flowing through Gadeok-myon of Cheongju City, is one of the representative strawberry fields employing water curtain cultivation (WCC) in Korea. In this area, annual groundwater use for WCC has been calculated by a few methods. On the assumption that all the water flowing through the final ditch may be mostly composed of groundwater, the discharge rate in it can be used as a good proxy for assessing the groundwater use. However, in the study area, the final ditch was set up in an unpaved state near and parallel to Musimcheon stream. Under such circumstances, the drainwater is likely to be influenced by infiltration and/or inflow of nearby stream. Hence, we examined whether or not stream water has influenced water flowing out through the final ditch in respect of ion concentrations or field parameters such as T, pH and electrical conductivity (EC) values. The period of measuring field parameters and sample collection was from February 2012 through February 2015. The drainwater in the final ditch did not show the average quality of groundwater, but similar quality of stream water in respect of pH, EC, ion contents and water type. From this, it is suggested that measuring the flow rate of the final ditch should not be directly used for assessing groundwater use in the study area. In addition, because of its sensitivity to ambient temperature, water temperature proved not to be appropriate for estimating the interaction between ditch and stream. For accuracy, additional methods will be needed to calculate mixing ratios between stream and ground water within drainage system.

Rheological behavior and IPL sintering properties of conductive nano copper ink using ink-jet printing (전도성 나노 구리잉크의 잉크젯 프린팅 유변학적 거동 및 광소결 특성 평가)

  • Lee, Jae-Young;Lee, Do Kyeong;Nahm, Sahn;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.174-182
    • /
    • 2020
  • The printed electronics field using ink-jet printing technology is in the spotlight as a next-generation technology, especially ink-jet 3D printing, which can simultaneously discharge and precisely control various ink materials, has been actively researched in recent years. In this study, complex structure of an insulating layer and a conductive layer was fabricated with photo-curable silica ink and PVP-added Cu nano ink using ink-jet 3D printing technology. A precise photocured silica insulating layer was designed by optimizing the printing conditions and the rheological properties of the ink, and the resistance of the insulating layer was 2.43 × 1013 Ω·cm. On the photo-cured silica insulating layer, a Cu conductive layer was printed by controlling droplet distance. The sintering of the PVP-added nano Cu ink was performed using an IPL flash sintering process, and electrical and mechanical properties were confirmed according to the annealing temperature and applied voltage. Finally, it was confirmed that the resistance of the PVP-added Cu conductive layer was very low as 29 μΩ·cm under 100℃ annealing temperature and 700 V of IPL applied voltage, and the adhesion to the photo-cured silica insulating layer was very good.

An Information Management Strategy Over Entire Life Cycles of Hazardous Waste Streams (유해폐기물 생애 전주기 흐름 기반 정보 관리 전략)

  • Lee, Sang-hun;Kim, Jungeun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.228-236
    • /
    • 2020
  • Korea has an economy based on manufacturing industrial fields, which produce high amounts of hazardous wastes, in spite of few landfill candidates, and a significant concern for fine airborne particulates; therefore, traditional waste management is difficult to apply in this country. Moreover, waste collection and accumulation have recently been intensified by the waste import prohibitions or regulations in developing nations, the universalization of delivery services in Korea, and the global COVID-19 crisis. This study thus presents a domestic waste management strategy that aims to address the recent issues on waste. The contents of the strategy as the main results of the study include the (1) improvement of the compatibility of the classification codes between the domestic hazardous waste and the international ones such as those of the Basel Convention; (2) consideration of the mixed hazard indices to represent toxicity from low-content components such as rare earth metals often contained in electrical and electronic equipment waste; (3) management application based on risks throughout the life cycles of waste; (4) establishment of detailed material flow information of waste by integrating the Albaro system, Pollutant Release and Transfer Register (PRTR) system, and online trade databases; (5) real-time monitoring and prediction of the waste movement or discharge using positional sensors and geographic information systems, among others; and (6) selection and implementation of optimal treatment or recycling practices through Life Cycle Assessment (LCA) and clean technologies.

Chemical Properties and Nutrient Loadings of Rainwater during Farming Season

  • Kim, Min-Kyeong;Hong, Seong-Chang;Lee, Jong-Sik;Jung, Goo-Buk;Kwon, Soon-Ik;Chae, Mi-Jin;Yun, Sun-Gang;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.386-390
    • /
    • 2013
  • Recently, special attention has been given to acid rain and its problem to environment such as acid precipitation and air pollution in East Asia. In the present study, rainwater samples were collected from Apr to Nov in 2012. The samples were chemically characterized for the assessment of emission sources. Suwon and Yeoju regions, typical agricultural areas in South Korea, were chosen for study sites. Ion composition and cation-affected neutralization were determined to evaluate the contribution of cations to the acidity of rainwater. Ion and electrical conductivity between the measured and the estimated showed high correlation. The cations observed in Suwon and Yeoju were $Na^+$ > $NH_4{^+}$ > $K^+$ > $Ca^{2+}$ > $Mg^{2+}$ > $H^+$ and $Na^+$ > $K^+$ > $NH_4{^+}$ > $Ca^{2+}$ > $Mg^{2+}=H^+$, respectively. The anions of all sites were $SO{_4}^{2-}$ > $NO_3{^-}$ > $Cl^-$. While the amounts of sulfate, one of the major dissolved components of rainwater, were 77.6 and 75.6 ueq $L^{-1}$ in Suwon and Yeoju, the ones of NSS-$SO{_4}^{2-}$ (Non-Sea Salt sulfate) were 83 and 82% in Suwon and Yeoju, respectively. The comparison of observed pH values ($pH_{obs}$) with the theoretical pH values ($pH_{the}$) showed that the neutralization of rain water considerably went along during the study periods. The highest amounts of rainfall throughout the year in Suwon and Yeoju were 572.3 and 484.6 mm in July, and its corresponding nitrogen loadings in Suwon and Yeoju were 5.28 and 3.50 kg $ha^{-1}$, respectively. The major ion contents for crop growth with $SO{_4}^{2-}$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$ were 51.7, 5.2, 11.8 and 1.8 kg $ha^{-1}$ in Suwon and 34.2, 4.0, 4.2 and 1.1 kg $ha^{-1}$ in Yeoju.

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF