• Title/Summary/Keyword: Electrical breakdown voltage

Search Result 1,206, Processing Time 0.03 seconds

A study on the v-t characteristics of interfaces between Toughened Epoxy and Rubber with Inverse Power Law (역승법칙을 이용한 터픈드 Epoxy/Rubber 계면의 V-t 특성에 관한 연구)

  • 박정규;이동규;오현석;신철기;박건호;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • In this study, the interfacial dielectric breakdown phenomenon of interface between Epoxy and Rubber was discussed, which affects the stability of insulation system of power delivery devices. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long time breakdown life time can be evaluated.

  • PDF

A Study on the Novel TIGBT with Trench Collector (트렌치 콜렉터를 가지는 새로운 TIGBT 에 관한 연구)

  • Lee, Jae-In;Yang, Sung-Min;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2010
  • Various power semiconductor devices have been developed and evolved since 1950s. Among them, IGBT is the most developed power semiconductor device which has high breakdown voltage, high current conduction and suitable switching speed which perform trade-offs between each other. In other words, there are trade-offs between a breakdown voltage and on-state voltage drop, and between on-state voltage drop and turn-off time. In this paper, the new structure is proposed to improve a trade-off between a breakdown voltage and on-state voltage drop. The proposed structure has a trench collector and this trench collector induces an accumulation layer at the bottom of an n-drift region during off-state. And this accumulation layer prevents expansion of depletion layer so that trapezoidal electric field distribution is performed in the n-drift region. As a result of this, breakdown voltage is increased without increasing on-state voltage drop. The electrical characteristics of the proposed IGBT is analyzed and optimized by using representative device simulator, TSUPREM4 and MEDICI. After optimization, the electrical characteristics of the proposed IGBT is compared with NPT IGBT which have the same device thickness. As a result of this, it can be confirmed that the proposed structure increases the breakdown voltage of 800 V than that of the conventional NPT IGBT without increasing the on-state voltage drop.

Dynamic Electrical Breakdown Characteristics of Liquid Nitrogen (액체 $N_2$의 동적 절연파괴 특성)

  • 김영석;정종만;곽민환;백승명;장현만;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.359-362
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen(LNd used as both coolant and insulator for high $T_c$ superconductor system is very important. This paper presents dynamic breakdown characteristics of liquid nitrogen by quench penomena of thermal bubble under high electric field. As the result, the breakdown mechanism of $LN_2$ depends on thermal bubble effect. The breakdown voltage decreases slightly with increasing heating. In the Electrode arrangement, electrical breakdown voltage of horizontal arrangement appears lower than that of vertical arrangement.

  • PDF

Comparision Study Between Modeling and Experiment of the Breakdown Voltage for AC Plasma Display Panel (AC 플라즈마 디스플레이패널의 방전개시전압에 모델과 실험의 비교에 관한 연구)

  • 박장식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1039-1044
    • /
    • 2000
  • Breakdown voltage model and expertiments are compared for discharge cells of AC plasma display panel. In the model, discharge paths are assumed to be initial electric field lines and the one-dimensional continuity equation is applied to the charged particle transport at each field line. The comparisons are performed in the wide range of gas pressure (50-600torr), Xe partial pressure over total pressure (1-6%), sustain electrode gap(100-1000$\mu\textrm{m}$), wall height(130, 300$\mu\textrm{m}$), and voltage pulse width(2-6${\mu}$s). The presented breakdown voltage model well agree with experiments in the above wide range. The increase of breakdown voltage with the decrease of the width(L) of protruding electrode is also described by the model.

  • PDF

characteristic of breakdown voltage of electrode gap in vacuum (진공에서 극간 gap에 따른 절연파괴 전압 특성 파악)

  • Yoon, Jae-Hun;Kim, Byung-Chul;Lee, Sueng-Su;Lim, Kee-Jo;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.366-367
    • /
    • 2008
  • SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of vacuum with air are studied in non-uniform field. The gap of needle to plane was 0.5mm, 0.8mm. The pressure of vacuum the range of 10^-4-10^-5torr. The diameter of a plane made of the stainless steel is150mm. As a result of the experiment, the breakdown voltage is increased about electrode gap distance increased. The electrode material influenced breakdown voltage in vacuum.

  • PDF

Analysis on the Chemical and Electrical Characteristic of Vegetable oil by Accelerated Aging (가속열화에 따른 식물성절연유의 화학적.전기적 특성 분석)

  • Choi, Sun-Ho;Jeong, Jung-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.984-989
    • /
    • 2011
  • Electrical insulation is one of the most important part in a high voltage apparatus. Recently, researchers are interested in the environmental friendly vegetable oil from environmental viewpoint. Accelerated aging transformer insulating material in vegetable oil was compared to that of mineral oil. Accelerated aging oil samples produced in the oven at $140^{\circ}C$ for 500, 1000, 1500, 2000hours. And Real transformer insulation oils samples of vegetable oil and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. Samples were analyzed at 42, 63, 93, 143, 190, 240, 300 cycles. The mineral and vegetable insulating oils were investigated for breakdown voltage, water content, total acid number, viscosity, volume resistivity, insulating paper and oil permittivity, and dissolved gas analyses. The breakdown voltage of the vegetable insulating oil is higher than that found for the mineral oil; the accelerated aging progress decreased the breakdown voltage. The vegetable oil had a higher water saturation than the mineral oil; the vegetable oil has the superior water characteristics and breakdown voltage. And high viscosity of vegetable oil, care has to be taken, especially when designing the cooling system for a large transformer.

Study on the Breakdown of the Transformer Insulating Oil in Nonuniform Electric Field (불평등 전계에서 변압기 절연유 절연파괴 연구)

  • Ha-Young Cho;Soon-Hyung Lee;Mi-Yong Hwang;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.280-285
    • /
    • 2023
  • A breakdown voltage and breakdown electric field of the transformer insulating oil of liquid dielectric were studied in uniform electric field and non-uniform electric field and the transformer insulating oil was observed by the process reached breakdown. Insulation performance evaluation of the liquid dielectric was evaluated at the electrode spacing of 2.5 mm under the conditions of domestic and international standards (KS C IEC 60156), so a comparative review was conducted at the electrode spacing of 2.5 mm. When the electrode spacing is 2.5 mm, the average breakdown voltage is 38.5 kV for sphere-sphere electrodes, 26.6 kV for plate-plate electrodes, 22.9 kV for needle-needle electrodes, and 24.3 kV for sphere-needle electrodes. 23.7 kV for the sphere-plate electrode, and 20.7 kV for the needle-plate electrode. From these results, it can be seen that the average value of the breakdown voltage at the electrode spacing of 2.5 mm, in ascending order, is sphere-sphere, plate-plate, sphere-needle, sphere-plate, needle-needle and needle-plate. It was found that the breakdown voltage of the unequal field was lower than that of the equal field.

Characteristics of Impulse Discharges in Wet Soil (습한 토양의 임펄스방전특성)

  • Kim, Hoe-Gu;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.363-369
    • /
    • 2017
  • This paper presents the experimental results related to soil ionization and electrical breakdown in a concentric hemispherical electrode system under lightning impulse voltages. Dynamic voltage-current and impedance-time characteristics of soil ionization were measured and analyzed. Also the electrical breakdowns of the soil gap were investigated. The time-lag to the peak current corresponds to the soil ionization propagation. The time of ionization propagation in wet sand is found to decrease with increasing the impulse currents. A drastic decrease in ground resistance was observed during the impulse current spreading in sand. The electrical breakdown appears at the wave tail of impulse voltage and results in a wide scatter in V-t curves. The voltage-current curves have a fan-like shape attributed to ionization processes which result in increasing current and decreasing voltage.

Junction termination technology for 4H-SiC devices (Junction termination 기법에 따른 4H-SiC 소자의 항복전압 특성 분석)

  • Kim, H.Y.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.286-289
    • /
    • 2003
  • In the case of high voltage devices, junction termination plays an important role in determining the breakdown voltage of the device. The mesa junction termination has been demonstrated to yield nearly ideal breakdown voltage for 6H-SiC p-n junctions. However, such an approach may not be attractive because of the nonplanar surface, which is difficult to passivate. Moreover, In case of 4H-SiC, ideal breakdown voltage could not be achieved using mesa junction termination. For 4H-SiC planar junction termination technique is more useful one rather than mesa junction termination. In this paper, breakdown characteristics of the 4H-SiC device with planar junction termination, such as FLR(Field Limiting Ring), FP(Field Plate) and JTE(Junction Termination Extension), is presented. In the case of the FLR, breakdown voltage of 1800V is obtained. And breakdown voltage of 1000V and 1150V is also obtained for the case of FP and JTE case, respectively.

  • PDF

The Optimal Design of High Voltage Non Punch Through IGBT and Field Stop IGBT (고전압 Non Punch Through IGBT 및 Field Stop IGBT 최적화 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.214-217
    • /
    • 2017
  • An IGBT (insulated gate bipolar transistor) device has an excellent current-conducting capability. It has been widely employed as a switching device to use in power supplies, converters, solar inverters, and household appliances or the like, designed to handle high power. The aim with IGBT is to meet the requirements for use in ideal power semiconductor devices with a high breakdown voltage, an on-state voltage drop, a high switching speed, and high reliability for power-device applications. In general, the concentration of the drift region decreases when the breakdown voltage increases, but the on-resistance and other characteristics should be reduced to improve the breakdown voltage and on-state voltage drop characteristics by optimizing the design and structure changes. In this paper, using the T-CAD, we designed the NPT-IGBT (non punch-through IGBT) and FS-IGBT (field stop IGBT) and analyzed the electrical characteristics of those devices. Our analysis of the electrical characteristics showed that the FS-IGBT was superior to the NPT-IGBT in terms of the on-state voltage drop.