• Title/Summary/Keyword: Electrical breakdown strength

Search Result 405, Processing Time 0.032 seconds

Breakdown Characteristic of Transformer Oil Depending on Tip Radius (침전극 곡률 반경에 따른 절연유의 절연파괴 특성)

  • Lee, J.S.;Jeong, S.H.;Lee, H.K.;Lim, K.J.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1478-1480
    • /
    • 1997
  • We investigated the breakdown characteristic of mineral oil according to applied voltage and tip radius. In this experiment, electrode system was point-plane geometry. The tip radius of needle was 5, 10, 20 and $25{\mu}m$, respectively. Applied voltage was AC and DC. We measured breakdown voltage for each tip radius with increasing electrode gap, 2mm to 10mm. Under nonuniform electric field, breakdown strength was higher when needle was negative than when needle was positive. Because it is polarity effects due to space charge. And the more sharp tip radius, whether we applied AC or DC, the higher breakdown strength. As tip radius increase, breakdown strength decreases exponentially.

  • PDF

A study on the repeated breakdown field strength of compressed $SF_{6}$ in uniform field perturbed by protrusion (교란된 평등전계에서 고기압 $SF_{6}$ 가스의 연속절연 파괴강도에 관한 연구)

  • 이동인
    • 전기의세계
    • /
    • v.29 no.2
    • /
    • pp.129-132
    • /
    • 1980
  • For large gas-insulated systems, the conductor utilized possess some degree of surface roughness which locally enhances the applied field at highpressure in $SF_{6}$. In order to investigate the effect of field enhancement on the breakdown field strength, the spheric protrusion was employed which gives a quantitative analysis on field enhancement. For further investigations on the breakdown level and polarity effect in $SF_{6}$, the repeated breakdown tests were performed with d.c. voltage at pressures up to about 4 bar. The experimental results show that the breakdown level does vary noticeably due to successive voltage applications and the breakdown field strength measured for a test gap with the cathode protrusion is markedly lower than that determined from the identical anode protrusion.

  • PDF

Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites (에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성)

  • Kang, Geun-Bae;Kwon, Soon-Seok;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.779-785
    • /
    • 2012
  • The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

Impulse Dielectric Breakdown Characteristics due to Network Structure Variation of Epoxy Composites (Epoxy 복합재료의 망목구조 변화에 따른 임펄스 절연파괴 특성)

  • 이덕진;김경환;김명호;손인환;김탁용;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.164-167
    • /
    • 1997
  • A series of interpenetrating polymer networks(IPN) based on Epoxy, MA and PU were synthesized in order to improve withstand voltage properties of Epoxy resin. Dielectric breakdown characteristics are investigated for six types of specimens. As a result, it was found that impulse voltage dielectric breakdown characteristic of SIN specimen was the most excellent. It was also found that SIN specimens were stronger than anything else in scanning electron microscopy. On the other hand, as a result of consideration of dielectric breakdown strength change according to adding fi1ter, it was confirmed that the decrease of dielectric breakdown strength are controlled slightly by IPN method.

  • PDF

An Analysis of Insulating Reliability in Epoxy Composites for Molding Materials of PT

  • Yang, Jeong-Yun;Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.43-46
    • /
    • 2001
  • The DC dielectric breakdown of epoxy composites used for transformer was experimented and then its data were simulated by Weibull distribution equation in this study. The more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical, and the breakdown strength of specimens with filler was lower than it of non-filler specimens because it was believed that the adding filler formed interface, charges were accumulated in it, the molecular mobility was raised, the electric field was concentrated, electrons were accelerated and then electron avalanche was early accomplished. From the analysis of Wei bull distribution equation, it was confirmed that as the allowed breakdown probability was· given by 0.1[%], the value of 'applied field was needed to be under 17.20[kV/mm].

  • PDF

Insulating Reliability according to additives in Epoxy Composites for PCB Material (인쇄 회로 기판용 에폭시 복합체의 첨가제에 따른 절연 신뢰도)

  • Yang, Jeong-Yun;Park, Young-Chull;Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.159-163
    • /
    • 2003
  • In this study, the DC dielectric breakdown of epoxy composites used for PCB material was experimented and then its data were simulated by Weibull distribution equation. The more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical, and the breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. From the analysis of Weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5[kV/mm].

  • PDF

The variation of water absorption rate and DC dielectric breakdown strength of Epoxy composites due to filler content (충진재 함량 변화에 따른 에폭시 복합재료의 흡수율과 직류 절연파괴강도의 변화)

  • Lee, D.J.;Kim, T.Y.;Shin, S.K.;Kim, M.H.;Kim, K.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2349-2351
    • /
    • 1999
  • In this paper, the variable absorption rates and DC dielectric breakdown strength of epoxy composites were measured at boiling absorption condition in order to observe the influences of moisture in out door use. Also, in order to improve withstand voltage properties at moisture absorbtion condition. IPN (interpenetrating polymer network) method which had been already reported, was introduced and the influence was investigated. As a result, it was confirmed that the moisture absorption rate was increased and DC dielectric breakdown strength was degraded with boiling time and filler content increasing. On the other hand, it was confirmed that moisture absorption rate and DC dielectric breakdown strength degrading rate were lowered by the improvement of adhesion strength In IPN specimens.

  • PDF

Insulation Design and Testing of HTS coil for 6.6 kV Class HTSFCL (6.6kV급 고온초전도 한류기용 HTS 코일의 절연 설계 및 시험)

  • 백승명;정종만;곽동순;류엔반둥;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.263-268
    • /
    • 2003
  • The Electrical insulation design and testing of high temperature superconducting (HTS) coil for high temperature superconducting fault current limiter (HTSFCL) has been performed. Electrical insulating factors of HTS coil for HTSFCL are turn-to-turn, layer-to-layer. The electrical insulation of turn-to-turn depends on surface length, and the electrical insulation of layer-to-layer depends on surface length and breakdown strength of L$N_2$. Therefore, two basic characteristics of breakdown and flashover voltage were experimentally investigated to design electrical insulation for 6.6㎸ Class HTSFCL. We used Weibull distribution to set electric field strength for insulation design. And mini-model HTS coil for HTSFCL was designed by using Weibull distribution and was manufactured to investigate breakdown characteristics. The mini-model HTS coil had passed in AC and Impulse withstand test.

  • PDF

Electrical properties of XLPE/SXLPE blends as a function of silane coupling agent contents (실란 계면 결합제 함량에 따른 XLPE/SXLPE 블렌드의 전기적 성질)

  • Ko, Jung-Woo;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.33-36
    • /
    • 2000
  • Electrical properties of Crosslinked polyethylene/silane crosslinked polyethylene (XLPE/SXLPE) blends were studied. Silane coupling agents of various contents were added to blends and their water tree and electrical breakdown characteristics were investigated. The water tree length of XLPE/SXLPE were increased by the addition of silane coupling agents except the case of SXLPE 10 % containing coupling agents of 0.5, 1.0 phr. AC breadown strength slightly increased by the addition of coupling agents to XLPE/SXLPE blends in cases of SXLPE 20 % containing coupling agents of 2.0 phr and SXLPE 50 %. The tendency of effects on water tree and breakdown characteristics was inverse.

  • PDF

Adhesion properties and Breakdown behaviors of LSR Interface (LSR 계면의 접착특성 및 절연파괴거동)

  • Yoon, Seung-Hoon;Nam, Jin-Ho;Lee, Gun-Ju;Choi, Soo-Geol;Shin, Doo-Sung;Ji, Eung-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.232-235
    • /
    • 2002
  • Recently developed liquid silicone rubber (LSR) can be cured by platinum catalyzed additional hydrosilylation mechanism and has the advantage of no byproduct compared to traditional millable peroxide curing silicone rubber. We investigated the characteristics of dielectric breakdown of silicone rubber and adhesion properties between semi-conductive LSR and insulating LSR for high voltage application of pre-molded joint (PMJ). In order to understand the dielectric breakdown characteristics, we used the sheet samples and the paired type rogowski insert electrode system. The breakdown strength and adhesion strength of LSR (E-3) were superior to those of several silicone rubbers. Adhesion strength could be improved by curing at high temperature without post-curing process or enhanced by post-curing process. When LSR (E-3) was cured at $(150^{\circ}C{\times}10min$ semi-conductive )${\times}$ ($175^{\circ}C{\times}10min$ insulation), it showed the high breakdown strength with low standard deviation, and good adhesion strength. In this results, we could apply this process to the fabrication of PMJ without post-curing.

  • PDF