• Title/Summary/Keyword: Electrical accident

Search Result 519, Processing Time 0.026 seconds

침수 누전에 대한 자계 특성

  • Kim, Tak-Yong;Lee, Gyeong-Seop;Kim, Jin-Sa;Kim, Chung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.147-147
    • /
    • 2009
  • Every year respect a countermeasure establishment the electric leakage detection system and electric leakage investigation work are becoming enforcement line plentifully in about the electric leakage accident which is increasing, measuring in compliance with a most ground connection voltage and an image electric current mainly is become accomplished, inputs a pulsation group signal in the line and detects a signal change between the line a method which there is. In order to investigate the quality in compliance with an electric leakage electric current from the electric leakage area after conferring the electric leakage environment in compliance with a flooding when the electric leakage electric current exists in the surface, it investigated the electric leakage electric current quality from the electric current distribution and flooded districts from the present paper.

  • PDF

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

Reliability Assessment of Railway Power System by using Tree Architecture (Tree 구조를 이용한 전철급전시스템의 신뢰도 평가)

  • Cha, Jun-Min;Ku, Bon-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • As catenary supply electric power directly to the railway system, it is very important to prevent an accident of a catenary for appropriate train operation. This paper proposed the assessment the outage data for "British Catenary Safety Analysis Report" and Korean data to compare the reliability of the railway system. The analyzed data were applied to Event Tree and Fault Tree algorithm to calculate the reliability indices of railway system. Event tree is created and gate results of fault tree analysis are used as the source of event tree probabilities. Fault tree represents the interaction of failures and basic events within a system. Event Tree and Fault Tree analysis result is helpful to assess the reliability to interpreted. The reliability indices can be used to determine the equipment to be replaced for the entire system reliability improvement.

The Suggestion of Reliability Improvement Method based on Failure Trend Analysis of Chiller (냉동기 고장경향분석을 통한 설비신뢰도향상 방안 제시)

  • Lee, Sang Dae;Yeom, Dong Un;Hyun, Jin Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.251-255
    • /
    • 2015
  • Chiller system plays an important role of maintaining room temperature constantly by supplying chilled water to Heating, Ventilating and Air Conditioning(HVAC)or area room cooler equipment during plant normal operation or accident condition. Chiller failures are one of the most frequently occurring equipment failures. If the types of chiller failures are analyzed and grouped thoroughly, it would be helpful to make chiller maintenance strategy at the plants. That would enhance equipment reliability of chiller in the end. In this paper, chiller failure data during three years were analyzed and categorized by specific failure code. In addition, the various proposals to improve equipment reliability of chiller were suggested such as Preventive Maintenance Optimization(PMO) strategy and performance monitoring reinforcement and so on.

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

Development of a Remote Inspection Method and Device for Line Sleeves on Transmission Line (송전선로 직선슬리브 원격점검 방법 및 장치)

  • Lee, Jae-Kyung;Jung, Nam-Joon;Kim, Ho-Ki;Kim, Kyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.206-213
    • /
    • 2011
  • Line sleeves, which used to connect ACSR cables when transmission lines were constructing, sometimes cause power transmission failure due to deterioration and corrosion. Therefore, power transmission line should be inspected regularly to prevent national disaster. Current inspection tool detects insertion length of transmission line on line sleeves, the inspection tool includes enormous error by operator. Moreover, the system is not controlled remotely, negligent accident would be caused while inspecting. To deal with those problems, KEPCO reviewed several ways to inspect line sleeves and proposes new method to inspect line sleeve by measuring magnetic flex which penetrate junction of steel and aluminum sleeve. The developed inspection tool is reliable enough to detect eccentric sleeves. Also, the developed inspection device was applied on actual transmission line and verified its effectiveness.

Reliability Analysis of Catenary of Electric Railway by using FTA (FTA를 이용한 전기철도 전차선의 신뢰도 분석)

  • Ku, Bon-Hui;Cha, Jun-Min;Kim, Hyung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1905-1909
    • /
    • 2008
  • As catenary supply electric power directly to the railway system, it is very important to prevent an accident of a catenary for appropriate train operations. This paper analyzed the outage data for British catenary safety analysis report and Korean data to compare the reliability of the railway systems. The analyzed data were applied to Fault Tree Analysis(FTA) algorithm to calculate the reliability indices of a railway system. Failure rate of an electric railway system through FTA were calculated for each element and the entire railway system. The reliability indices can be used to determine the eqipment to be replaced for the entire system reliability improvement.

Operational Characteristics of DC Reactor Type SFCL for Accident of Both Power Source Side and Load Side (전원단 및 부하단 사고에 따른 DC 리액터형 고온초전도 전류제한기 동작특성)

  • Lee, Su-Won;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.140-145
    • /
    • 2004
  • In this paper, we analyzed the operational characteristics of the modified DC reactor type SFCL and derived the design condition of superconducting coil to be operated properly as power source as well as fault current limiter. It was confirmed through the simulation for the operation of this SFCL that the modified DC reactor type SFCL could be operated as both the uninterruptible power supply and the fault current limiter by controlling the duty ratio of GTO thyristor bridge.

Performance Evaluation of Protection against Electric Shocks for TT and TN Systems (TT, TN접지계통의 감전보호 성능평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Yoo, Jae-Duk;Shin, Hee-Kyung;Yang, Soon-Man;Kim, Tae-Gi;Lee, Zu-Cheul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.315-318
    • /
    • 2009
  • Electric shock is the accident caused by the current through a person or animal's body. That is characterized by the physiological effects. In this paper, we evaluate performance of protection against electric shocks for TT and TN grounding systems which are used by a low voltage consumer nowadays. The performance of protection against electric shocks for TT grounding system is very excellent in equipotential area of the third class grounding, but the performance is poor outside the equipotential area. The performance of protection against electric shocks for TN grounding system is excellent because the potential difference is less than 50V. Accordingly, the performance of protection for TN grounding system is good as compared with that for TT grounding System.

  • PDF

Input Signal Estimation About Controller Using Neural Networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son Jun-Hyeok;Seo Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.495-497
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.