• Title/Summary/Keyword: Electrical Installation

Search Result 6,497, Processing Time 0.031 seconds

Development of EIS Evaluation Method about PEMFC 1kW STACK (가정용 연료전지 스택의 EIS 평가 기법 개발)

  • Park, Chaneom;Han, Woonki;Jung, Jinsu;Ko, Wonsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.100.1-100.1
    • /
    • 2011
  • Electrochemical impedance spectroscopy(EIS) are using widely as a useful technique mainly in the field of electrochemical for the analysis of electrode reactions or characteristics of the composites. The response analysis of the systems technique provides comprehensive informations about the characteristic and structure of complex and internal reaction. The EIS is the method to measure impedance of the measurement target classified by the frequency, it select the equivalent impedance model to give same response from the result and it calculate the parameter. Therefore, the chemical reaction inside the fuel cell is to modeling to electrical impedance. And as repeating the same experiment in each of the operating point, we can get each different parameter. As a result, we can establish the equivalent impedance model in each operating point. Therefore, if we use these models, we can evaluate the fuel cell without the internal design parameter of the fuel cell as required in existing modeling. The EIS is used typically technique for distinguish status of fuel cell called SOH(State Of Health). When the fuel cell is degradation, Efficiency and health of the fuel cell is reduced because internal impedance is increase. As usage of these principles, we can evaluate state of fuel cell through the impedance analysis of fuel cells. In this study, we are presents EIS distinction system and algorithm for residential fuel cell systems. At the time of the fuel cell installation in the fields, the EIS system and proposed algorithm will be able to apply as technique for efficiency and performance evaluation about fuel cell system.

  • PDF

Developed of Smart Phone Charge System and Data Analysis for Efficient Solar Module Arrangement (효율적인 태양광 모듈 배치를 위한 데이터 분석 및 스마트폰 충전 시스템 개발)

  • Jang, Won-chang;Jeon, Min-ho;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2016
  • Recently, solar module is installed in crowded areas to offers services so that people can charge their smartphones or tablets. However, the burden in terms of cost is high to install in areas where utilization ratio is low and installation is difficult in limited spaces. In this paper, a system for collecting and providing the optical power is proposed from the analysis about the person that receives service in each area using the real-time data provided by the state and collected from the actual environment as well as considering the waiting time and the solar charging time in different environments. As a result, This study shows that charge was not delayed since collecting power exceeds charging power. Smartphone was fully charged in ninety-five minutes. we confirmed that with one smartphone, it can be charged a approximately fifty percent of the battery in between ten to twenty minutes, with multiple units they can be charged a approximately twenty percent of the battery in between ten to twenty minutes.

A study on the Site Survey and Detection Efficiency for Kepco Lightning Detection and Information Network (낙뢰측정 네트워크(KLDNet)를 위한 감지기 사이트서베이와 낙뢰 감지율 검토)

  • Woo, J.W.;Kwak, J.S.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.532-537
    • /
    • 2006
  • Lightning induced faults accounts for more than 66% at the transmission lines of KEPCO. The lightning causes damages to power system equipments including transmission line, the blackout of electricity and the electro-magnetic interference. Because of this reason, we need the real time lightning information for the optimal operation of power system. And, it is required to obtain and accumulate the lightning current parameters for the insulation design. In 2005, KEPRI constructed a lightning detection network, the KLDNet (i.e. Kepco Lightning Detection & Information System) and launched a lightning information service for KEPCO customers. It is intended to provide data service on the operation of transmission lines and collect lightning-related data, which is the most important factor regulating power system design and operation. The new system will replace LPATS, the old detection system, which has been operating since 1995 and is rapidly failing in terms of both detection performance and location accuracy. The purpose of this paper is to explain the work performed and the results of that work in performing a site survey of several locations. The purpose of the site survey is to find locations acceptable for the installation of a lightning location receiver in support of a Lightning detection system(LDS). A restriction was placed on the surveyed locations, as they must belong to the Korea Electric Power Company. This requirement was made to facilitate the communication needs of the LDS network. Total of 15 sites were evaluated as possible LDS sensor sites. Some of the sites were rejected for physical reasons and therefore no electrical testing was performed. Of the 15 sites, total of 10 sites were considered acceptable and 5 sites were rejected for various reason. In this paper, we would like to explain the site survey and detection efficiency for LDS.

Development of Pressure Sensor on Polymer Substrate for Real-time Pulse and Blood Pressure Measurements (실시간 맥박 및 혈압 측정을 위한 폴리머 기판 압력센서 개발)

  • Kim, Jin-Tae;Kim, Sung Il;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.669-676
    • /
    • 2013
  • In this study, we introduce a polymer(polyimide) based pressure sensor to measure real-time heart beat and blood pressure. The sensor have been designed with consideration of skin compatibility of material, cost effectiveness, manufacturability and wireless detection. The designed sensor was composed of inductor coils and an air-gap capacitor which generate self-resonant frequency when electrical source is applied on the system. The sensor was obtained with metalization, etching, photolithography, polymer adhesive bonding and laser cutting. The fabricated sensor was shaped in circular type with 10mm diameter and 0.45 mm thickness to fit radial artery. Resonant frequencies of the fabricated sensors were in the range of 91~96 MHz on 760 mmHg pressurized environment. Also the sensor has good linearity without any pressure-frequency hysteresis. Sensitivity of the sensor was 145.5 kHz/mmHg and accuracy was less than 2 mmHg. Real-time heart beat measurement was executed with a developed hand-held measurement system. Possibility of real-time blood pressure measurement was showed with simulated artery system. After installation of the sensor on skin above radial artery, simple real blood pressure measurement was performed with 64 mmHg blood pressure variation.

Resistivity Survey Using Long Electrodes (긴 전극을 사용하는 전기비저항 탐사)

  • Cho, In-Ky;Lee, Keun-Soo;Kim, Yeon-Jung;Kim, Rae-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Generally, a point source has been routinely used in the electrical resistivity measurements because of easy installation. If steel-cased wells are used as long electrodes, we can expect the better depth of investigation. However, the resistivity data with long electrodes can not be processed with a conventional inversion algorithm because a long electrode produces the different primary potential distribution compared with the point source. In this study, we proposed a new technique to process the electrical resistivity data with long electrodes by replacing the long electrode with a sequence of point electrodes. Comparing the potentials obtained from the technique with the analytic/numerical solution, we ensure that the proposed technique can be used for the numerical resistivity modeling based on the finite difference or finite element method.

Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities (열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구)

  • Lee, Jae-Jun;Kim, Dae-Hoon;Lee, Kang-Hwi;Lim, Jae-Kyu;Lee, Seung-Tae
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

Development and Evaluation of the Bender Type Piezoelectric Energy Harvester According to Installation Methods and Vehicle Weight (매설방법과 차량하중에 따른 벤더형 압전에너지 하베스터의 설계 및 평가)

  • Kim, Chang-Il;Jeong, Young-Hun;Yun, Ji-Sun;Cho, Jeong-Ho;Paik, Jong-Hoo;Jang, Yong-Ho;Choi, Beom-Jin;Park, Shin-Seo;Cho, Young-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.274-278
    • /
    • 2016
  • A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 20 piezoelectric materials. This study attempted to evaluate output depending on pavement materials when paving road piezoelectric energy harvester in the road. Harvester is the bender type and is the method of supporting the both ends of piezoelectric material and applying the load in the middle part. Harvester was paved in the type paved with asphalt, type paved with cement and in the exposed type not covering the top of harvester. The output characteristics were compared and evaluated depending on changes in vehicle load and vehicle speed changes. As vehicles, truck (11.9 ton), SUV(1.6 ton) and sedan (1.5 ton) were used and the output characteristics when driving at the interval of 10 km/h from 10 km/h to 100 km/h were evaluated.

Analysis of fault current in offshore wind farm ccording to the grid connection method (해상풍력 발전단지의 전력망 연계방식에 따른 고장전류 분석)

  • Ahn, Jin-Hong;Kim, Eel-Hwan
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.691-698
    • /
    • 2020
  • The installation cost or the magnitude of the fault current varies depending on the grid connection method of the offshore wind farm. Therefore, there is a need for an efficient power grid connection method considering the capacity and location of the complex. In particular, most power cables in offshore wind farms use 3-core considering cost and efficiency. In the event of a failure such as a short circuit, the entire cable must be replaced, which can lead to significant losses in terms of cost, considering repair costs and turbine downtime. Therefore, in this paper, a radial, ring, and molding method is introduced into a 100 MW wind farm to be installed at Jeju offshore, and a three-phase short circuit failure is performed using a PSCAD/EMTDC program to perform computer analysis. I would like to propose a suitable power grid connection method.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.