• Title/Summary/Keyword: Electrical IT Equipment

Search Result 1,192, Processing Time 0.026 seconds

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

A Study on the Examination of Explosion Hazardous Area Applying Ventilation and Dilution (환기 및 희석을 적용한 폭발위험장소 검토에 관한 연구)

  • kim, Nam Suk;Lim, Jae Geun;Woo, In Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • Classification of explosion hazard areas is very important in terms of cost and safety in the workplace handling flammable materials. This is because the radius of the hazardous area determines whether or not the explosion-proof equipment is installed in the electrical machinery and apparatus. From November 6, 2017, KS C IEC-60079-10-1: 2015 will be issued and applied as a new standard. It is important to understand and apply the difference between the existing standard and the new standard. Leakage coefficients and compression factors were added to the leakage calculation formula, and the formula of evaporation pool leakage, application of leakage ball size, and shape of explosion hazard area were applied. The range of the safety factor K has also been changed. Also, in the radius of the hazardous area, the existing standard applies the number of ventilation to the virtual volume, but the revised standard is calculated by using the leakage characteristic value. In this study, we investigated the differences from existing standards in terms of ventilation and dilution and examined the effect on the radius of the hazard area. Comparisons and analyzes were carried out by applying revised standards to workplaces where existing explosion hazard locations were selected. The results showed that even if the ventilation and dilution were successful, the risk radius was not substantially affected.

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.

Development of Conductive Polycaprolactone (PCL)-resin based on Reduced Graphene Oxide(rGO)/Polypyrrole (Ppy) composite for 3D-printing application (3D 프린팅 응용을 위한 환원그래핀/폴리피롤 복합체 기반의 전도성 폴리카프로락톤 레진의 개발)

  • Jeong, Hyeon Taek;Jung, Hwa Yong;Cho, Young Kwang;Kim, Chang Hyeon;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.935-939
    • /
    • 2018
  • 3D Printing technology is developing in various prototypes for medical treatment, food, fashion as well as machinery and equipment parts production. 3D printing technology is also able to fully be utilized to other industries in terms of developing its technology which has been reported in many field of areas. 3D printing technology is expected to be used in various applications related to $4^{th}$ industrial revolution such as finished products and parts even it is still carried out in the prototype model. In this study, we have investigated and developed conductive resin for 3d printing application based on reduced graphene oxide(rGO)/Polypyrrole(Ppy) composite and polycaprolactone(PCL) as a biodegradable polymer. The electrical properties and surface morphology of the conductive PCL resin based on therGO/Ppy composite were analyzed by 4point-probe and scanning electron microscope(SEM). The conductive PCL resin based on rGO/Ppy composite is expected to be applicable not only 3D printing, but also electronic materials in other industrial fields.

Seismic Fragility Evaluation of Cabinet Panel by Nonlinear Time History Analysis (비선형시간이력해석을 이용한 수배전반의 지진취약도 도출)

  • Moon, Jong-Yoon;Kwon, Min-ho;Kim, Jin-Sup;Lim, Jeong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.50-55
    • /
    • 2018
  • Earthquakes are almost impossible to predict and take place in a short time. In addition, there is little time to take aggressive action when an earthquake occurs. Therefore, there are more casualties and property damage than with other natural disasters. Recently, earthquakes have been occurring all over the world. As the number of earthquakes increase, studies on the safety of structures are being carried out. On the other hand, there are few studies on the electric facilities, which are relatively non - structural factors. Currently, electrical equipment in Korea is often not designed for earthquake safety and is quite vulnerable to damage when an earthquake occurs. Therefore, in this study, modeling was conducted through ABAQUS similar to an actual cabinet panel and 3D dynamic nonlinear analysis was performed using a natural seismic. According to seismic zone I and normal ground rock conditions of the power transmission and transmission facility seismic design practical guide, the maximum response acceleration of the performance level was 0.157g. In this study, however, it was not safe to reach the limit state of 30% of the analytical result at 0.1g for the general cabinet panel. From the results, the seismic fragility curve was derived and analyzed. The derived seismic fragility curve is presented as a quantitative basis for determining the limit state of the cabinet panel and can be utilized as basic data in related research.

Simulation Methods Development for a Plant Unit Master Control Logic Using Simulink in MATLAB (매트랩 시뮬링크를 이용한 플랜트 유닛마스터 제어로직 시뮬레이션 기법 개발)

  • Yoon, Changsun;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.324-334
    • /
    • 2017
  • The simulators for a plant unit master control (UMC) developed by domestic or overseas researchers have been developed for operator-training purposes. UMC simulators normally constructed at the end of the plant construction, despite the UMC logics, should be simulated to pre-check many signal interfaces within the power generation systems. Because of the differences in construction schedule, it is difficult for logic designers or commissioning engineers to simulate the UMC logic during the design or commissioning stage. In this background, this paper proposes a simulation method that can be used easily by plant logic designers or operators in the MATLAB Simulink programming environment. The core of the UMC is realized with a unique simulation algorithm based on mathematical analysis and functional blocks combination. In addition, an integer-based configuration was proposed to realize the plant target value control for the equipment in the logic. With these simulation methods, functions, e.g., load distribution, high-low limitations, frequency compensation, etc. were simulated. The results showed that the plant UMC logic can be simulated in Simulink without a plant simulator. The various functions proposed in this paper can provide useful information about Simulink-based simulation design for plant logic designers or commissioning engineers during the power plant construction period.

The implementation of cable path and overfill visualization based on cable occupancy rate in the Shipbuilding CAD (조선 CAD에서 선박의 Cable 점유율을 기반으로 Cable 경로 및 Overfill 가시화 구현)

  • Kim, Hyeon-Jae;Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.740-745
    • /
    • 2016
  • Cables are installed for tens of thousands of connections between various pieces of equipment to operate and control a commercial ship. The correct shortest-route data is necessary since these are complicated cable installations. Therefore, an overfill interval commonly exists in the shortest paths for cables as estimated by Dijkstra's algorithm, even if this algorithm is generally used. It is difficult for an electrical engineer to find the overfill interval in 3D cable models because the occupancy rate data exist in a data sheet unlinked to three-dimensional (3D) computer-aided design (CAD). The purpose of this study is to suggest a visualization method that displays the cable path and overfill interval in 3D CAD. This method also provides various color visualizations for different overfill ranges to easily determine the overfill interval. This method can reduce cable-installation man-hours from 7,000 to 5,600 thanks to a decreased re-installation rate, because the cable length calculation's accuracy is raised through fast and accurate reviews based on 3D cable visualization. As a result, material costs can also be reduced.

A study on Safety Management and Control in Wet-Etching Process for H2O2 Reactions (습식 에칭 공정에서의 과산화수소 이상반응에 대한 안전 대책 및 제어에 관한 연구)

  • Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.650-656
    • /
    • 2018
  • The TFT-LCD industry is a kind of large-scale industrial Giant Microelectronics device industry and has a similar semiconductor process technology. Wet etching forms a relatively large proportion of the entire TFT process, but the number of published research papers on this topic is limited. The main reason for this is that the components of the etchant, in which the reaction takes place, are confidential and rarely publicized. Aluminum (Al) and copper (Cu), which have been used in recent years for the manufacture of large area LCDs, are very difficult materials to process using wet etching. Cu, a low-resistance material, can only be used in the wet etching process, and is used as a substitute for Al due to its high speed etching, low failure rate, and low power consumption. Further, the abnormal reaction of hydrogen peroxide ($H_2O_2$), which is used as an etching solution, requires additional piping and electrical safety devices. This paper proposes a method of minimizing the damage to the plant in the case of adverse reactions, though it cannot limit the adverse reaction of hydrogen peroxide. In recent years, there have been many cases in which aluminum etching equipment has been changed to copper. This paper presents a countermeasure against abnormal reactions by implementing safety PLC with a high safety grade.

LPG Cylinder Leak Experiment from Multiple Leak Scenarios (누출종류에 따른 LP가스용기 누출량 실증 실험)

  • Lee, Minkyung;Lee, Kang-Ok;Kim, Young Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2019
  • Unlike NG supplied through pipes, LPG is mainly used for independent storage of cylinders or small storage tanks. As LPG is widely used in islands and underdeveloped areas, accidents due to neglect of safety management are high. Houses and businesses that have LPG accidents are likely to be damaged due to relatively high population density. Therefore, the necessity of strengthening the safety management of LPG is constantly raised. Accordingly, in 1996, Korea Gas Safety Corporation conducted an LPG leak test. In this study, based on the 96-year experiment, the gas leakage measurement of LPG vessels was conducted by adding several conditions such as outside temperature and pipe condition. Through this, the trend of leakage for various scenarios of LPG leakage was examined. In the case of a gas leak, when the article which may affect the pressure such as a regulator is not connected, the leakage amount is greatly changed by the outside air temperature, and when the regulator is fastened, the influence of the outlet pressure is large. It is expected that the experiment can be used as basic data for determining gas accidents and leakages that may occur later.

A Study of Arrow Performance using Artificial Neural Network (Artificial Neural Network를 이용한 화살 성능에 대한 연구)

  • Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.548-553
    • /
    • 2014
  • In order to evaluate the performance of arrow that manufactures through production process, it is used that personal experiences such as hunters who have been using bow and arrow for a long time, technicians who produces leisure and sports equipment, and experts related with this industries. Also, the intensity of arrow's impact point which obtains from repeated shooting experiments is an important indicator for evaluating the performance of arrow. There are some ongoing researches for evaluating performance of arrow using intensity of the arrow's impact point and the arrow's flying image that obtained from high-speed camera. However, the research that deals with mutual relation between distribution of the arrow's impact point and characteristics of the arrow (length, weight, spine, overlap, straightness) is not enough. Therefore, this paper suggests both the system that could describes the distribution of the arrow's impact point into numerical representation and the correlation model between characteristics of arrow and impact points. The inputs of the model are characteristics of arrow (spine, straightness). And the output is MAD (mean absolute distance) of triangular shaped coordinates that could be obtained from 3 times repeated shooting by changing knock degree 120. The input-output data is collected for learning the correlation model, and ANN (artificial neural network) is used for implementing the model.