• 제목/요약/키워드: Electrical Energy

검색결과 10,809건 처리시간 0.032초

Hydrogen Generation by Electrical Discharge Through Metal / Water System

  • Park, Yong-Man;Kang, Goo-Jin;Cha, Suk-Yal;Lee, Woong-Moo
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.198-202
    • /
    • 1996
  • Reactive metals like aluminum generate hydrogen gas when it reacts with water. Aluminum, despite its high chemical affinity with water, cannot continue the reaction due to the passive oxide layers formed on its surface. When the reaction is assisted by electrical energy dissipation in the form of discharge, the reaction is more likely to be sustained. In this report, some preliminary experimental results are presented regarding the hydrogen generation based on this scheme.

  • PDF

PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구 (A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material)

  • 차두열;이수진;장성필
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

신재생에너지가 연계된 마이크로그리드에서 에너지 저장장치의 최적 용량 선정에 관한 연구 (A Study on Optimal Capacity of Energy Storage System in Renewable Energy Based Micorgrids)

  • 김욱원;이남형;이윤성;신제석;김진오
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.529-533
    • /
    • 2012
  • By introducing RPS(Renewable Portfolio Standard) for reduction of greenhouse gas, Renewable energy sources have becoming widespread gradually. However, Renewable energy sources, such as wind power and PV are difficult to control the output and they have intermittent characteristics of the output. These characteristics would cause some problems when it is connected in the power system. In order to solve these problems, Energy Storage Systems(ESS) are considered to use. Although there are many different storage devices, the utilization of Secondary Battery is the one of the best ways to stabilize an output fluctuation of RES because of its fast responsibility. For that reason, it would better fit a large-capacity of Secondary battery for stabilization. However, batteries cannot be installed with a large capacity blindly because of its expensive cost. So to select proper capacity of the battery is an important consideration. This paper presented a methodology for the optimal capacity and operation of ESS in microgrids.

  • PDF

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

소형 전기에너지저장장치 운전조건에 따른 방사 및 전도 방해에 관한 연구 (A Study on Radiated and Conducted Noise for Small Electrical Energy Storage System due to Its Operating State)

  • 정중일;안건현;김용성
    • 전기학회논문지P
    • /
    • 제64권1호
    • /
    • pp.18-22
    • /
    • 2015
  • When using a secondary battery in energy storage units, if the grid is in light duty the active power is stored so it can be used when the grid is in heavy duty. This makes possible for the load equalize and make the grid optimized. Recently the government is trying to propagate this technology. Depending on its capacity this kind of electric energy storage unit is used in adjusting the frequency, break up the energy peak in summer and winter, stabilize the energy output of renewable energy which can change unstably because of the environment. Which makes it possible to stabilize the grid. It is anticipated that market of 120 trillion won will be developed worldwide in 2030. Currently in Korea a steady supply is in progress. However because of stray electromagnetic waves some other electronics are malfunctioning. This paper covers the research in the method to detect the emission noise in small electric energy storage units using lithium secondary batteries and battery management system, Power conditioning systems with CIPSR standards. And the research of a more efficient method to measure such stray electromagnetic waves.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Two Stage Hybrid Optimization을 사용한 ESS 최적 운전 전략에 대한 연구 (A Study on ESS Optimal Operation Strategy Using Two Stage Hybrid Optimization)

  • 공은경;손진만
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.833-839
    • /
    • 2018
  • This paper presents an analysis and the methodology of optimal operation strategy of the ESS(Energy Storage System) for reduce electricity charges. Electricity charges consist of a basic charge based on the contract capacity and energy charge according to the power usage. In order to use electrical energy at minimal charge, these two factors are required to be reduced at the same time. QP(Quadratic Programming) is appropriate for minimization of the basic charge and LP(Linear Programmin) is adequate to minimize the energy charge. However, the integer variable have to be introduced for modelling of different charge and discharge efficiency of ESS PCS(Power Conversion System), where MILP(Mixed Integer Linear Programming) can be used. In this case, the extent to which the peak load savings is accomplished should be assumed before the energy charge is minimized. So, to minimize the electricity charge exactly, optimization is sequentially performed in this paper, so-called the Two Stage Hybird optimization, where the extent to which the peak load savings is firstly accomplished through optimization of basic charge and then the optimization of energy charge is performed with different charge and discharge efficiency of ESS PCS. Finally, the proposed method is analyzed quantitatively with other optimization methods.

위도와 해발높이에 따른 태양광발전 효율 분석 연구 (A Study on Solar Power Generation Efficiency Analysis according to Latitude and Altitude)

  • 차왕철;박정호;조욱래;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.95-100
    • /
    • 2014
  • To solve the problem of conventional fossil energy, utilization of renewable energy is growing rapidly. Solar energy as an energy source is infinite, and a variety of research is being conducted into its utilization. To change solar energy into electrical energy, we need to build a solar power plant. The efficiency of such a plant is strongly influenced by meteorological factors; that is, its efficiency is determined by solar radiation. However, when analyzing observed generation data, it is clear that the generated amount is changed by various factors such as weather, location and plant efficiency. In this paper, we proposed a solar power generation prediction algorithm using geographical factors such as latitude and elevation. Hence, changes in generated amount caused by the installation environment are calculated by curve fitting. Through applying the method to calculate this generation amount, the difference between real generated amount is analyzed.