• Title/Summary/Keyword: Electrical Energy

Search Result 10,758, Processing Time 0.047 seconds

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.

Feasibility Study on the Fault Tree Analysis Approach for the Management of the Faults in Running PCR Analysis (PCR 과정의 오류 관리를 위한 Fault Tree Analysis 적용에 관한 시범적 연구)

  • Lim, Ji-Su;Park, Ae-Ri;Lee, Seung-Ju;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.245-252
    • /
    • 2007
  • FTA (fault tree analysis), an analytical method for system failure management, was employed in the management of faults in running PCR analysis. PCR is executed through several processes, in which the process of PCR machine operation was selected for the analysis by FTA. The reason for choosing the simplest process in the PCR analysis was to adopt it as a first trial to test a feasibility of the FTA approach. First, fault events-top event, intermediate event, basic events-were identified by survey on expert knowledge of PCR. Then those events were correlated deductively to build a fault tree in hierarchical structure. The fault tree was evaluated qualitatively and quantitatively, yielding minimal cut sets, structural importance, common cause vulnerability, simulation of probability of occurrence of top event, cut set importance, item importance and sensitivity. The top event was 'errors in the step of PCR machine operation in running PCR analysis'. The major intermediate events were 'failures in instrument' and 'errors in actions in experiment'. The basic events were four events, one event and one event based on human errors, instrument failure and energy source failure, respectively. Those events were combined with Boolean logic gates-AND or OR, constructing a fault tree. In the qualitative evaluation of the tree, the basic events-'errors in preparing the reaction mixture', 'errors in setting temperature and time of PCR machine', 'failure of electrical power during running PCR machine', 'errors in selecting adequate PCR machine'-proved the most critical in the occurrence of the fault of the top event. In the quantitative evaluation, the list of the critical events were not the same as that from the qualitative evaluation. It was because the probability value of PCR machine failure, not on the list above though, increased with used time, and the probability of the events of electricity failure and defective of PCR machine were given zero due to rare likelihood of the events in general. It was concluded that this feasibility study is worth being a means to introduce the novel technique, FTA, to the management of faults in running PCR analysis.

Effect of the Application of Sucrose on Rapid Decrease of Soil Inorganic Nitrogen (Sucrose 처리가 토양 무기태질소의 신속 감소에 미치는 영향)

  • Ku, Hyun-Hwoi;Lim, Woo-Jin;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • To solve the problems with excessive accumulation of soil inorganic N and resulting saline soils from overuse of nitrogen fertilizer, the effect of sucrose application on decrease of soil inorganic N content and electrical conductivity (EC) was studied. Sucrose treatment greatly reduced ${NH_4}^+$-N content in soil. The amount of reduction was greater as the amount of sucrose treatment was increased. When ${NH_4}^+$-N content was reached the lowest point (about 10 mg $kg^{-1}$or lower), the C/N ratio, which determines the amount of sucrose treatment, was around 10 regardless of initial ${NH_4}^+$-N content. For the rate of ${NH_4}^+$-N reduction 15~36 hours was required to reduce the initial ${NH_4}^+$-N content to half, and 36~69 hours to lower ${NH_4}^+$-N content to the lowest point (about 10 mg $kg^{-1}$or lower). In addition, sucrose treatment greatly lowered ${NO_3}^-$-N content. In case of C/N ratio above 10, initial ${NO_3}^-$-N content of 348 mg $kg^{-1}$ was reduced to the lowest of 14~21 mg $kg^{-1}$. As for the rate of ${NO_3}^-$-N reduction by sucrose treatment, it took 36~60 hours for ${NO_3}^-$-N content to reach the lowest point for C/N ratio of 10 or higher, and it took 3 weeks, comparably longer time, for C/N ratio of 5. Lowering soil EC from sucrose treatment showed the same trend as ${NO_3}^-$-N content. As an important energy and carbon source for humankind, sugar should not be wasted and must be carefully applied to soil. In principle, the best way of preventing salt accumulation in soil is to optimize the fertilizer input. However, when over-fertilization should be dealt with, the sucrose treatment would be a possible and effective counter-measure to reduce overdosed nitrogen sources in soil.

Ecological Characteristics and Management Plan of Geumdangsil Pine Forest of Yecheon (예천 금당실 송림의 생태적 특성 및 관리방안)

  • Lee, Soo-Dong;Lee, Chan;Kim, Donwook;Kim, Jisuk
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.718-732
    • /
    • 2013
  • The purpose of this study was to provide data for the basic research to found the effective conservation and management plan for the Geumdangsil Pine Forest of Yecheon designated as Natural Monument No. 469. Furthermore, this paper suggest efficient sustainable forest preservation and using. In order to achieve the sustainable forest preservation, this study was to analyse topography, land use, tree growth, soil environment, forest usage and forest management, etc. According to analysis the results, the site area is located in the flatlands where is from 130 to 140 m above sea level. The around forest was transformed into agricultural land. The 565 individuals of Pinus densiflora grows in the forest, whereas, 25 trees was cut down or died. There are signs of 25 stumps. The most of 565 trees' diameter at breast height(DBH) was centerized between 30 cm and 50 cm, moreover, the average life expectancy of trees were 85.4 years. The oldest age of tree was estimated to be 200 years. The Sample trees of rate of branch growth is from 4.3 cm to 5.1 cm per year. The middle branch which is more vigorous growth grow 24.2 cm for 3 years. Moreover, the result of soil physico-chemical properties analysis of 7 plots, 4 categories which is soil organic matter, total nitrogen, available phosphoric acid, specific electrical conductance was generally good, however, the 2 categories which is soil pH, exchangeable cation needed improvement. Currently, the site was not pressured by facilities and usage, however, there might be threaten by agriculture such as encroaching on forest. Therefore, there should establish comprehensive ecosystem management such as facility management, visitors management and operation management In this paper considered 4 fields that is ecosystem management, facility management, visitors management and operation management for sustainable management.

Study on the Whitening Efficacy and Skin Barrier by Lysosome-related Organelle Extract (LOE) from Egg White (난백(Egg White)에서 추출한 리소좀 추출물(LOE)의 미백 효능 및 피부장벽에 관한 연구)

  • Choi, Da Hee;Jeon, Gyeongchan;Yoon, Jihee;Min, Jiho;Park, Si Jun;Kim, Jung Su;Hwang, Ee Taek;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.389-397
    • /
    • 2019
  • Lysosomes are cellular organelles involved in energy metabolism and intracellular digestion in eukaryotic cells, including protease, nuclease, glycosidase, lipase, and phosphatase. Our previous studies have confirmed that egg white lysosomes had melanin decolorization and reduction activity. However, there have been few studies on skin barrier and skin regeneration as well as inhibition of melanin production by egg white lysosomes on B16F10 melanocyte cell line. In this study, we attempted to identify the effect of lysosome-related organelle extract (LOE) extracted from egg white on the melanin content change and skin barrier enhancement in cells. First, cytotoxicity evaluation was performed on B16F10 melanocyte cell line to confirm the whitening efficacy of LOE. Cytotoxicity by LOE was not observed at 20 mg/mL concentration, but cytotoxicity was observed at 40 mg/mL, and the maximum concentration value was set to 20 mg/mL in all subsequent experiments. LOE samples of 5, 10, 20 mg/mL inhibited melanin production by 61.5 ± 4.0%, 61.4 ± 7.3%, 58.3 ± 8.3%, respectivly, compared to α-MSH, a negative control in melanin contents assay. MITF mRNA expression was reduced by about 39.7 ± 3.2% compared to the α-MSH treatment group. TEER assay using HaCaT showed that LOE increased TEER resistance in a dose-dependent manner, indicating that LOE is involved in strengthening the skin barrier. LOE also increased the TEER resistance under TNF-α treatment. Skin barrier was normally restored by LOE even under the condition of inflammation. LOE had a positive effect on cell division and cell migration promotion, confirmed by the observing the effect of promoting cell migration by LOE through cell migration assay. Taken together, we expect that LOE can be developed as a cosmetic material to enhance has effects on skin regeneration and skin barrier strengthening as well as whitening function if enzyme stabilization and formulation technology are combined.

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

Growth Performance, Carcass Characteristics and Plasma Mineral Chemistry as Affected by Dietary Chloride and Chloride Salts Fed to Broiler Chickens Reared under Phase Feeding System

  • Mushtaq, M.M.H.;Pasha, T.N.;Akram, M.;Mushtaq, T.;Parvin, R.;Choi, H.C.;Hwangbo, J.;Kim, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.845-855
    • /
    • 2013
  • Requirements of dietary chloride (dCl) and chloride salts were determined by using $4{\times}2$ factorial arrangement under four phase feeding program. Four levels (0.31, 0.45, 0.59 and 0.73%) and two sources ($NH_4Cl$ and $CaCl_2$) of the dCl were allocated to 1,472 chicks in eight dietary treatments in which each treatment was replicated four times with 46 birds per replicate. The four phase feeding program was comprised of four dietary phases: Prestarter (d 1 to 10), Starter (d 11 to 20), Grower (d 21 to 33) and Finisher (d 34 to 42); and diets were separately prepared for each phase. The cations, anions, pH, dissolved oxygen (DO), temperature, electrical conductivity (EC), total dissolved solids (TDS) and salinity were analyzed in drinking water and were not affected by dietary treatments. BW gain (BWG; $p{\leq}0.009$) and feed:gain (FG; $p{\leq}0.03$) were improved in $CaCl_2$ supplemented diets during d 1 to 10. The maximum response of BWG and FG was observed at 0.38% and 0.42% dCl, respectively, for d 34 to 42. However, the level of dCl for BWG during d 21 to 33 ($p{\leq}0.04$) and d 34 to 42 ($p{\leq}0.009$) was optimized at 0.60% and 0.42%, respectively. The level of dCl for optimized feed intake (FI; $p{\leq}0.006$), FG ($p{\leq}0.007$) and litter moisture (LM; $p{\leq}0.001$) was observed at 0.60%, 0.38% and 0.73%, respectively, for d 1 to 42. Water intake (DWI) was not affected by increasing dCl supplementation (p>0.05); however, the ratio between DWI and FI (DWI:FI) was found highest at 0.73% dCl during d 1 to 10 ($p{\leq}0.05$) and d 21 to 33 ($p{\leq}0.009$). Except for d 34 to 42 ($p{\leq}0.006$), the increasing level of dCl did not result in a significant difference in mortality during any phase. Blood pH and glucose, and breast and thigh weights (percentage of dressed weight) were improved while dressing percentage (DP) and gastrointestinal health were exacerbated with $NH_4Cl$ as compared to $CaCl_2$ supplemented diets ($p{\leq}0.001$). Higher plasma $Na^+$ and $HCO_3{^-}$ and lower $Cl^-$ and $Ca^{{+}{+}}$ were observed in $NH_4Cl$ supplemented diets ($p{\leq}0.001$). Increasing supplementation of dCl increased plasma $Cl^-$ ($p{\leq}0.04$; quadratically) and linearly reduced plasma $K^+$ ($p{\leq}0.001$), $Ca^{{+}{+}}$ ($p{\leq}0.003$), $HCO_3{^-}$ ($p{\leq}0.001$), and $Na^+$ ($p{\leq}0.001$; quadratically). Consequently, higher requirements of dietary chloride are suggested for feed intake; nevertheless, lower levels of dietary chloride are sufficient to support optimal BWG and FG with increasing age. The $NH_4Cl$ supplemented diets ameliorate breast and thigh meat yield along with overall energy balance (glucose).