• Title/Summary/Keyword: Electrical Drives

Search Result 732, Processing Time 0.024 seconds

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

Efficiency Improvement of VVCF-Induction Motor Drives with Counter EMF Estimation (역기전력 추정에 의한 VVCF-유도전동기 시스템의 운전효율개선)

  • Moon, Sang-Chun;Lee, Seung-Chul;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.271-273
    • /
    • 1995
  • This paper proposes the efficiency improvement method of vvcf-induction motor drives, which operates always at rated speed, regardless of load conditions, with counter emf estimation. The counter emf is estimated by detecting the fundamental component of motor input current, which is employed in speed control algorithm through the comparison with the actual counter emf during the nonconduction interval. The input power reduction by speed control is confirmed through simulations and experimental results.

  • PDF

Analysis of Harmonics generated at Load of Adjustable Speed Drives (가변속 구동장치의 부하측에서 발생하는 고조파 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.46-48
    • /
    • 1997
  • Induction motor control using for adjustable speed drives has caused secondary effect such as harmonics. Therefore it is considered a various countermeasures to minimize these effects. In this paper, we analyzed the influence of harmonics that is generated by the inverter device for adjustable speed drive of induction motor at the load side.

  • PDF

A Study on an Analog Controller for SRM Drives (Switched Reluctance Motor 구동을 위한 Analog Controller에 관한 연구)

  • Kang, W.;Kim, H.S.;Won, C.Y.;Kim, W.H.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.837-839
    • /
    • 1993
  • This study describes an analog controller for SRM drives. The overall scheme of the drive is detailed using an 8/6 SRM configuration. Special efforts are exercised in showing the necessity of the triggering angle advances to enhance the drive characteristics such as output-power increase and good speed-responses.

  • PDF

Design and analysis of the characteristics of PM-SM for the high-speed drives (고속용 영구자석형 동기 모터의 설계와 특성 해석)

  • Jang, S.M.;Jeong, S.S.;Yang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.49-51
    • /
    • 1998
  • This paper presents 2-pole permanent magnet synchronous motor(PM-SM) designed for the high-speed drives. Therefore. this motor has the NdFeB Permanent magnet as rotor. which is designed simper than the commercial PM-SM. We treated the developments - design. analysis - of PM-SM

  • PDF

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.

A New Three-Phase Lead-Lag Random Pulse Position PWM Scheme for Decreasing Audible Acoustic Noise of Motor Drives (모터 구동 장치의 가청 소음 저감을 위한 새로운 3상 Lead-Lag 랜덤 펄스 위치 PWM 기법)

  • Wi, Seok-O;Jeong, Yeong-Guk;Im, Yeong-Cheol;Na, Seok-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.387-398
    • /
    • 2002
  • In this paper, a new Three-Phase Lead-Lag Random Pulse Position PWM(LL-RPWM) scheme is proposed and implemented for decreasing audible acoustic noise of motor drives. In the proposed RPWM(Random PWM), each of three phase pulses is located randomly in each switching interval. Based on the space vector modulation technique, the duty ratio of the pulses is calculated. Along with the randomization of the PWM pulses, we can obtain the effects of spread spectra of voltage, current as in the case of randomly changed switching frequency. To verify the validity of the proposed LL-RPWM, the simulation and experimental study was tried. Along with the randomization PWM pulses, the space vector modulation is also executed in the C167 micro-controller. The simulation and experimental results show that the voltage and current harmonics are spread to a wide band area and that the audible acoustic noise is reduced by the proposed RPWM method.

Rotor Fault Detection System for the Inverter Driven Induction Motor using Current Signals

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Choi, Chang-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.224-231
    • /
    • 2009
  • The induction motor rotor fault diagnosis system using current signals, which are measured using an axis-transformation method, is presented in this paper. In inverter-fed motor drives, unlike line-driven motor drives, the stator currents are rich in harmonics; therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, and encoder, etc. The proposed axis-transformation method with encoder and without encoder is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation is compared with the results obtained from fast Fourier transforms.

Four-Quadrant Operation of a Single-Switch-based Switched Reluctance Drive (단일 스위치 기반의 4상한 운전 SRM 드라이브)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.338-343
    • /
    • 2010
  • Low cost motor drives are being sought for high volume energy efficient home appliances. Key to the realization of such low cost motor drives is to reduce the power electronic converter in terms of its components, particularly the active devices, finding the motor with least complexity for manufacturing and a controller that could extract the desired performance from the machine and converter combination. These and other factors such as self-starting, speed control over a wide range and most of all the crowning aspect of a four quadrant operation with bare minimum number of controllable switch (or switches) remain as formidable challenges for low cost motor drive realization. In this paper, a four quadrant switched reluctance motor (SRM) drive with only one controllable switch is realized by using a two-phase machine. The theory and operation of the proposed four-quadrant SRM drive with the proposed control algorithm for its realization are described. The motor drive is modeled, simulated and analyzed to verify its feasibility for self-starting, speed control and for four quadrant operation and the simulation results are presented. Experimental results confirm the validity of the proposed control algorithm for four quadrant control of the SRM drive. The focus of the paper is mainly directed toward the control algorithm for realizing the four-quadrant operation of the two-phase SRM drive with a single controllable switch converter.